On locally analytic vectors of the completed cohomology of modular curves
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the locally analytic vectors in the completed cohomology of modular curves and determine the eigenvectors of a rational Borel subalgebra of $\mathfrak {gl}_2(\mathbb {Q}_p)$. As applications, we prove a classicality result for overconvergent eigenforms of weight 1 and give a new proof of the Fontaine–Mazur conjecture in the irregular case under some mild hypotheses. For an overconvergent eigenform of weight k, we show its corresponding Galois representation has Hodge–Tate–Sen weights $0,k-1$ and prove a converse result.
@article{10_1017_fmp_2022_1,
     author = {Lue Pan},
     title = {On locally analytic vectors of the completed cohomology of modular curves},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2022.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.1/}
}
TY  - JOUR
AU  - Lue Pan
TI  - On locally analytic vectors of the completed cohomology of modular curves
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.1/
DO  - 10.1017/fmp.2022.1
LA  - en
ID  - 10_1017_fmp_2022_1
ER  - 
%0 Journal Article
%A Lue Pan
%T On locally analytic vectors of the completed cohomology of modular curves
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2022.1/
%R 10.1017/fmp.2022.1
%G en
%F 10_1017_fmp_2022_1
Lue Pan. On locally analytic vectors of the completed cohomology of modular curves. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2022.1

[AGT16] Abbes, A., Gros, M. and Tsuji, T., The -Adic Simpson Correspondence, Annals of Mathematics Studies, Vol. 193, (Princeton University Press, Princeton, NJ, 2016). MR 3444777.Google Scholar

[AIS14] Andreatta, F., Iovita, A. and Stevens, G., ‘Overconvergent modular sheaves and modular forms for ’, Israel J. Math. 201(1) (2014), 299–359. MR 3265287.Google Scholar | DOI

[Ard17] Ardakov, K., ‘Equivariant -modules on rigid analytic spaces’, Astérisque (2017), to appear.Google Scholar

[Beĭ84] Beĭlinson, A., ‘Localization of representations of reductive Lie algebras’, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (PWN, Warsaw, 1984), 699–710. MR 804725.Google Scholar

[BB83] Beĭlinson, A. and Bernstein, J., ‘A generalization of Casselman’s submodule theorem’, in Representation Theory of Reductive Groups (Park City, Utah, 1982), Progr. Math., Vol. 40 (Birkhäuser Boston, Boston, 1983), 35–52. MR 733805.Google Scholar

[BB10] Berger, L. and Breuil, C., ‘Sur quelques représentations potentiellement cristallines de ’, Astérisque 330 (2010), 155–211. MR 2642406.Google Scholar

[BC08] Berger, L. and Colmez, P., ‘Familles de représentations de de Rham et monodromie -adique’, Astérisque 319 (2008), 303–337. MR 2493221.Google Scholar

[BC16] Berger, L. and Colmez, P., ‘Théorie de Sen et vecteurs localement analytiques’, Ann. Sci. Éc. Norm. Supér. (4) 49(4) (2016), 947–970. MR 3552018.Google Scholar | DOI

[BW00] Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, second ed., Mathematical Surveys and Monographs, Vol. 67 (American Mathematical Society, Providence, RI, 2000). MR 1721403.Google Scholar | DOI

[BLR91] Boston, N., Lenstra, H. W. Jr. and Ribet, K. A., Quotients of group rings arising from two-dimensional representations’, ‘C. R. Acad. Sci. Paris Sér. I Math. 312(4) (1991), 323–328. MR 1094193.Google Scholar

[Bou60] Bourbaki, N., Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind. No. 1285 (Hermann, Paris, 1960). MR 0132805.Google Scholar

[BP21] Boxer, G. and Pilloni, V., Higher Coleman theory, Preprint, 2021, URL: https://perso.ens-lyon.fr/vincent.pilloni/HigherColeman.pdf.Google Scholar

[BE10] Breuil, C. and Emerton, M., ‘Représentations -adiques ordinaires de et compatibilité local-global’, Astérisque 331 (2010), 255–315. MR 2667890.Google Scholar

[BT99] Buzzard, K. and Taylor, R., ‘Companion forms and weight one forms’, Ann. Math. (2) 149(3) (1999), 905–919. MR 1709306.Google Scholar | DOI

[CE12] Calegari, F. and Emerton, M., ‘Completed cohomology—a survey’, in Non-Abelian Fundamental Groups and Iwasawa Theory, London Math. Soc. Lecture Note Ser., Vol. 393 (Cambridge Univ. Press, Cambridge, 2012), 239–257. MR 2905536.Google Scholar

[CG18] Calegari, F. and Geraghty, D., ‘Modularity lifting beyond the Taylor–Wiles method’, Invent. Math. 211(1) (2018), 297–433. MR 3742760.Google Scholar | DOI

[Cam21] Camargo, J. E. Rodríguez, Eichler-Shimura maps for the modular curve, Preprint, 2021, URL: .Google Scholar | arXiv

[CS17] Caraiani, A. and Scholze, P., ‘On the generic part of the cohomology of compact unitary Shimura varieties’, Ann. Math. (2) 186(3) (2017), 649–766. MR 3702677.Google Scholar | DOI

[Che14] Chenevier, G., ‘The -adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings’, in Automorphic Forms and Galois Representations . Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414 (Cambridge Univ. Press, Cambridge, 2014), 221–285. MR 3444227.Google Scholar

[CHJ17] Chojecki, P., Hansen, D. and Johansson, C., ‘Overconvergent modular forms and perfectoid Shimura curves’, Doc. Math. 22 (2017), 191–262. MR 3609197.Google Scholar

[Cla66] Clark, D. N., ‘A note on the -adic convergence of solutions of linear differential equations’, Proc. Amer. Math. Soc. 17 (1966), 262–269. MR 186895.Google Scholar

[CM98] Coleman, R. and Mazur, B., ‘The eigencurve’, in Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., Vol. 254 (Cambridge Univ. Press, Cambridge, 1998), 1–113. MR 1696469.Google Scholar

[Col10] Colmez, P., ‘Représentations de et -modules’, Astérisque 330 (2010), 281–509. MR 2642409.Google Scholar

[CD14] Colmez, P. and Dospinescu, G., ‘Complétés universels de représentations de ’, Algebra Number Theory 8(6) (2014), 1447–1519. MR 3267142.Google Scholar | DOI

[CDP14] Colmez, P., Dospinescu, G. and Paškūnas, V., ‘The -adic local Langlands correspondence for ’, Camb. J. Math. 2(1) (2014), 1–47. MR 3272011.Google Scholar | DOI

[Del71] Deligne, P., ‘Formes modulaires et représentations -adiques’, in Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., Vol. 175 (Springer, Berlin, 1971), 139–172. MR 3077124.Google Scholar

[DS74] Deligne, P. and Serre, J.-P., ‘Formes modulaires de poids ’, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530. MR 379379.Google Scholar | DOI

[DLLZ18] Diao, H., Lan, K.-W., Liu, R. and Zhu, X., Logarithmic Riemann-Hilbert Correspondences for Rigid Varieties, Preprint, 2018, URL: https://www-users.cse.umn.edu/~kwlan/articles/log-RH.pdf.Google Scholar

[DLLZ19] Diao, H., Lan, K.-W., Liu, R. and Zhu, X., Logarithmic Adic Spaces: Some Foundational Results, 2019, Preprint, URL: https://www-users.cse.umn.edu/~kwlan/articles/log-adic.pdf.Google Scholar

[Dos12] Dospinescu, G., ‘Actions infinitésimales dans la correspondance de Langlands locale -adique’, Math. Ann. 354(2) (2012), 627–657. MR 2965255.Google Scholar | DOI

[DLB17] Dospinescu, G. and Le Bras, A.-C., ‘Revêtements du demi-plan de Drinfeld et correspondance de Langlands -adique’, Ann. Math. (2) 186(2) (2017), 321–411. MR 3702670.Google Scholar | DOI

[DPS20] Dospinescu, G., Paškūnas, V. and Schraen, B., Infinitesimal Characters in Arithmetic Families, Preprint, 2020, URL: .Google Scholar | arXiv

[DS13] Dospinescu, G. and Schraen, B., ‘Endomorphism algebras of admissible -adic representations of -adic Lie groups’, Represent. Theory 17 (2013), 237–246. MR 3053464.Google Scholar | DOI

[Elk90] Elkik, R., ‘Solutions d’équations à coefficients dans un anneau hensélien’, Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603, MR 345966.Google Scholar | DOI

[Eme06a] Emerton, M., ‘A local-global compatibility conjecture in the -adic Langlands programme for ’, Pure Appl. Math. Q. 2(2) (2006), 279–393. Special Issue: In honor of John H. Coates. Part 2. MR 2251474.Google Scholar | DOI

[Eme06b] Emerton, M., ‘On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms’, Invent. Math. 164(1) (2006), 1–84. MR 2207783.Google Scholar | DOI

[Eme11] Emerton, M., ‘Local-global compatibility in the p-adic Langlands programme for ’, Preprint, 2011, URL: http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf.Google Scholar

[EPW] Emerton, M., Pollack, R. and Weston, T., ‘Explicit reciprocity laws and Iwasawa theory for modular forms’, in preparation.Google Scholar

[Fal87] Faltings, G., ‘Hodge–Tate structures and modular forms’, Math. Ann. 278(1-4) (1987), 133–149. MR 909221.Google Scholar | DOI

[Fal05] Faltings, G., ‘A -adic Simpson correspondence’, Adv. Math. 198(2) (2005), 847–862. MR 2183394.Google Scholar | DOI

[Fon04] Fontaine, J.-M., ‘Arithmétique des représentations galoisiennes -adiques’, Astérisque 295 (2004), xi, 1–115. MR 2104360.Google Scholar

[Gou94] Gouvêa, F. Q., ‘Continuity properties of -adic modular forms’, in Elliptic Curves and Related Topics, CRM Proc. Lecture Notes, Vol. 4 (Amer. Math. Soc., Providence, RI, 1994), 85–99. MR 1260956.Google Scholar | DOI

[Gro57] Grothendieck, A., ‘Sur quelques points d’algèbre homologique’, Tohoku Math. J. 9(2) (1957), 119–221. MR 102537.Google Scholar

[Han16] Hansen, D., Quotients of Adic Spaces by Finite Groups, Math. Res. Letters (2016), to appear.Google Scholar

[Hid89] Hida, H., Nearly ordinary Hecke algebras and Galois representations of several variables, in Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988) (Johns Hopkins Univ. Press, Baltimore, MD, 1989), 115–134. MR 1463699.Google Scholar

[How21] Howe, S., ‘Overconvergent modular forms are highest-weight vectors in the Hodge–Tate weight zero part of completed cohomology’, Forum Math. Sigma 9 (2021), e17.Google Scholar | DOI

[Hub96] Huber, R., Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, Vol. E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996). MR 1734903.Google Scholar | DOI

[KS94] Kashiwara, M. and Schmid, W., ‘Quasi-equivariant -modules, equivariant derived category, and representations of reductive Lie groups’, in Lie Theory and Geometry, Progr. Math., Vol. 123 (Birkhäuser Boston, Boston, 1994), 457–488. MR 1327544.Google Scholar | DOI

[Kat73] Katz, N. M., ‘-Adic properties of modular schemes and modular forms’, in Modular Functions of One Variable, Vol. III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics, Vol. 350 (Springer-Verlag, Berlin, New York, 1973), 69–190. MR 0447119.Google Scholar | DOI

[KM85] Katz, N. M. and Mazur, B., Arithmetic Moduli of Elliptic Curves, Annals of Mathematics Studies, Vol. 108 (Princeton University Press, Princeton, NJ, 1985). MR 772569.Google Scholar | DOI

[LZ17] Liu, R. and Zhu, X., ‘Rigidity and a Riemann-Hilbert correspondence for -adic local systems’, Invent. Math. 207(1) (2017), 291–343. MR 3592758.Google Scholar | DOI

[Mum77] Mumford, D., ‘Hirzebruch’s proportionality theorem in the noncompact case’, Invent. Math. 42 (1977), 239–272. MR 471627.Google Scholar | DOI

[Pan19] Pan, L., The Fontaine–Mazur Conjecture in the Residually Reducible Case, J. Amer. Math. Soc. (2019), to appear.Google Scholar

[Pan20] Pan, L., A Note on Overconvergence of Hecke Action, Preprint, 2020, .Google Scholar | arXiv

[Paš13] Paškūnas, V., ‘The image of Colmez’s Montreal functor’, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1–191. MR 3150248.Google Scholar | DOI

[Paš16] Paškūnas, V., ‘On 2-dimensional 2-adic Galois representations of local and global fields’, Algebra Number Theory 10(6) (2016), 1301–1358. MR 3544298.Google Scholar | DOI

[Pas18] Paskunas, V., ‘On some consequences of a theorem of J. Ludwig’, Preprint, 2018, .Google Scholar | arXiv

[PT21] Paškūnas, V. and Tung, S.-N., ‘Finiteness properties of the category of mod representations of ’, Forum Math. Sigma. 9 (2021), Paper No. e80, 39. MR 4350140.Google Scholar

[Pil13] Pilloni, V., ‘Overconvergent modular forms’, Ann. Inst. Fourier (Grenoble) 63(1) (2013), 219–239. MR 3097946.Google Scholar | DOI

[PS16] Pilloni, V. and Stroh, B., ‘Surconvergence, ramification et modularité’, Astérisque 382 (2016), 195–266. MR 3581178.Google Scholar

[Sch11] Schneider, P., -Adic Lie Groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 344 (Springer, Heidelberg, 2011). MR 2810332.Google Scholar

[ST02] Schneider, P. and Teitelbaum, J., ‘Locally analytic distributions and -adic representation theory, with applications to ’, J. Amer. Math. Soc. 15(2) (2002), 443–468. MR 1887640.Google Scholar | DOI

[ST03] Schneider, P. and Teitelbaum, J., ‘Algebras of -adic distributions and admissible representations’, Invent. Math. 153(1) (2003), 145–196. MR 1990669.Google Scholar | DOI

[Sch12] Scholze, P., ‘Perfectoid spaces’, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258.Google Scholar | DOI

[Sch13b] Scholze, P., ‘Perfectoid spaces: a survey’, in Current Developments in Mathematics 2012 (Int. Press, Somerville, MA, 2013), 193–227. MR 3204346.Google Scholar

[Sch13a] Scholze, P., ‘-Adic Hodge theory for rigid-analytic varieties’, Forum Math. Pi 1 (2013), e1, 77. MR 3090230.Google Scholar | DOI

[Sch15] Scholze, P., ‘On torsion in the cohomology of locally symmetric varieties’, Ann. Math. (2) 182(3) (2015), 945–1066. MR 3418533.Google Scholar | DOI

[Sch16] Scholze, P., ‘-Adic Hodge theory for rigid-analytic varieties—corrigendum’ [MR3090230], Forum Math. Pi 4 (2016), e6, 4. MR 3535697.Google Scholar | DOI

[Sen81] Sen, S., ‘Continuous cohomology and -adic Galois representations’, Invent. Math. 62(1) (1980/81), 89–116. MR 595584.Google Scholar | DOI

[Sta20] The Stacks Project authors, The stacks project, https://stacks.math.columbia.edu, 2020.Google Scholar

[Wei77] Weisinger, J., Some Results on Classical Eisenstein Series and Modular Forms over Function Fields (ProQuest LLC, Ann Arbor, MI, 1977). MR 2940742.Google Scholar

Cité par Sources :