KP governs random growth off a 1-dimensional substrate
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

The logarithmic derivative of the marginal distributions of randomly fluctuating interfaces in one dimension on a large scale evolve according to the Kadomtsev–Petviashvili (KP) equation. This is derived algebraically from a Fredholm determinant obtained in [MQR17] for the Kardar–Parisi–Zhang (KPZ) fixed point as the limit of the transition probabilities of TASEP, a special solvable model in the KPZ universality class. The Tracy–Widom distributions appear as special self-similar solutions of the KP and Korteweg–de Vries equations. In addition, it is noted that several known exact solutions of the KPZ equation also solve the KP equation.
@article{10_1017_fmp_2021_9,
     author = {Jeremy Quastel and Daniel Remenik},
     title = {KP governs random growth off a 1-dimensional substrate},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2021.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.9/}
}
TY  - JOUR
AU  - Jeremy Quastel
AU  - Daniel Remenik
TI  - KP governs random growth off a 1-dimensional substrate
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.9/
DO  - 10.1017/fmp.2021.9
LA  - en
ID  - 10_1017_fmp_2021_9
ER  - 
%0 Journal Article
%A Jeremy Quastel
%A Daniel Remenik
%T KP governs random growth off a 1-dimensional substrate
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.9/
%R 10.1017/fmp.2021.9
%G en
%F 10_1017_fmp_2021_9
Jeremy Quastel; Daniel Remenik. KP governs random growth off a 1-dimensional substrate. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2021.9

[AS79] Ablowitz, M. J. and Segur, H., ‘On the evolution of packets of water waves’, J. Fluid Mech. 92(4) (1979), 691–715.Google Scholar | DOI

[AM05] Adler, M. and Van Moerbeke, P., ‘PDEs for the joint distributions of the Dyson, Airy and sine processes’, Ann. Probab. 33(4) (2005), 1326–1361.Google Scholar | DOI

[ACQ11] Amir, G., Corwin, I. and Quastel, J., ‘Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions’, Comm. Pure Appl. Math. 64(4) (2011), 466–537.Google Scholar | DOI

[BBP05] Baik, J., Ben Arous, G. and Péché, S., ‘Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices’, Ann. Probab. 33(5) (2005), 1643–1697.Google Scholar | DOI

[BBD08] Baik, J., Buckingham, R. and Difranco, J., ‘Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function’, Comm. Math. Phys. 280(2) (2008), 463–497.Google Scholar | DOI

[BL19] Baik, J. and Liu, Z., ‘Multipoint distribution of periodic TASEP’, J. Amer. Math. Soc. 32(3) (2019), 609–674.Google Scholar | DOI

[BLS20] Baik, J., Liu, Z. and Silva, G., ‘Limiting one-point distribution of periodic TASEP’, Ann. Inst. Henri Poincaré Probab. Stat., forthcoming; Preprint, 2020, arXiv:2008.07024.Google Scholar

[BCF14] Borodin, A., Corwin, I. and Ferrari, P., ‘Free energy fluctuations for directed polymers in random media in dimension’, Comm. Pure Appl. Math. 67(7) (2014), 1129–1214.Google Scholar | DOI

[Bor+15] Borodin, A., Corwin, I., Ferrari, P. and Vető, B., ‘Height fluctuations for the stationary KPZ equation’, Math. Phys. Anal. Geom. 18(1) (2015), 20.Google Scholar | DOI

[Bor+07] Borodin, A., Ferrari, P. L., Prähofer, M. and Sasamoto, T., ‘Fluctuation properties of the TASEP with periodic initial configuration’, J. Stat. Phys. 129(5-6) (2007), 1055–1080.Google Scholar | DOI

[CDR10] Calabrese, P., Doussal, P. L. and Rosso, A., ‘Free-energy distribution of the directed polymer at high temperature’, EPL (Europhys. Lett.) 90(2) (2010), 20002.Google Scholar | DOI

[CFP10] Corwin, I., Ferrari, P. L. and Péché, S., ‘Limit processes for TASEP with shocks and rarefaction fans’, J. Stat. Phys. 140(2) (2010), 232–267.Google Scholar | DOI

[DOV19] Dauvergne, D., Ortmann, J. and Virág, B., ‘The directed landscape’, Acta Math. forthcoming; Preprint, 2019, arXiv:1812.00309.Google Scholar

[Dot10] Dotsenko, V., ‘Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers’, EPL (Europhys. Lett.) 90(2) (2010), 20003.Google Scholar | DOI

[IS12] Imamura, T. and Sasamoto, T., ‘Exact solution for the stationary Kardar-Parisi-Zhang equation’, Phys. Rev. Lett. 108(19) (2012), 190603.Google ScholarPubMed | DOI

[IS13] Imamura, T. and Sasamoto, T., ‘Stationary correlations for the 1D KPZ equation’, J. Stat. Phys. 150(5) (2013), 908–939.Google Scholar | DOI

[Joh00] Johansson, K., ‘Shape fluctuations and random matrices’, Comm. Math. Phys. 209(2) (2000), 437–476.Google Scholar | DOI

[Joh03] Johansson, K., ‘Discrete polynuclear growth and determinantal processes’, Comm. Math. Phys. 242(1-2) (2003), 277–329.Google Scholar | DOI

[KPZ86] Kardar, M., Parisi, G. and Zhang, Y.-C., ‘Dynamical scaling of growing interfaces’, Phys. Rev. Lett. 56(9) (1986), 889–892.Google Scholar | DOI

[KPV97] Kenig, C. E., Ponce, G. and Vega, L., ‘Global solutions for the KdV equation with unbounded data’, J. Differential Equations 139(2) (1997), 339–364.Google Scholar | DOI

[Kon82] Konopelchenko, B. G., ‘On the structure of nonlinear evolution equations and their Bäcklund transformations connected with the matrix nonstationary Schrödinger spectral problem’, J. Phys. A 15(11) (1982), 3425–3437.Google Scholar | DOI

[LD20] Le Doussal, P., ‘Large deviations for the Kardar-Parisi-Zhang equation from the Kadomtsev-Petviashvili equation’, J. Stat. Mech. Theory Exp. 4 (2020), 043201.Google Scholar | DOI

[LDC12] Le Doussal, P. and Calabrese, P., ‘The KPZ equation with flat initial condition and the directed polymer with one free end’, J. Stat. Mech. 2012(06) (2012), P06001.Google Scholar | DOI

[MQR17] Matetski, K., Quastel, J. and Remenik, D., ‘The KPZ fixed point’, Acta Math. forthcoming; Preprint, 2017, arXiv:1701.00018v1.Google Scholar

[McK11] Mckean, H. P., ‘Fredholm determinants’, Cent. Eur. J. Math. 9(2) (2011), 205–243.Google Scholar | DOI

[MJD00] Miwa, T., Jimbo, M. and Date, E., Solitons , Cambridge Tracts in Mathematics: Differential Equations, Symmetries and Infinite-Dimensional Algebras vol. 135 (Cambridge University Press, Cambridge, UK, 2000). Translated from the 1993 Japanese original by Miles Reid.Google Scholar

[Po84] Pöppe, C., ‘The Fredholm determinant method for the KdV equations’, Phys. D 13(1-2) (1984), 137–160.Google Scholar | DOI

[Po89] Pöppe, C., ‘General determinants and the function for the Kadomtsev-Petviashvili hierarchy’, Inverse Problems 5(4) (1989), 613–630.Google Scholar | DOI

[PS88] Pöppe, C. and Sattinger, D. H., ‘Fredholm determinants and the function for the Kadomtsev-Petviashvili hierarchy’, Publ. Res. Inst. Math. Sci. 24(4) (1988), 505–538.Google Scholar | DOI

[Pro20] Prolhac, S., ‘Riemann surfaces for KPZ with periodic boundaries’, Sci Post Phys. 8 (2020), no. 1, paper No 008, 74pp.Google Scholar

[QR19] Quastel, J. and Remenik, D., ‘How flat is flat in random interface growth?’, Trans. Amer. Math. Soc. 371(9) (2019), 6047–6085.Google Scholar | DOI

[Sak03] Sakhnovich, A. L., ‘Matrix Kadomtsev-Petviashvili equation: Matrix identities and explicit non-singular solutions’, J. Phys. A 36(18) (2003), 5023–5033.Google Scholar | DOI

[Sas05] Sasamoto, T., ‘Spatial correlations of the 1D KPZ surface on a flat substrate’, J. Phys. A 38(33) (2005), L549.Google Scholar | DOI

[SS10] Sasamoto, T. and Spohn, H., ‘Exact height distributions for the KPZ equation with narrow wedge initial condition’, Nuclear Phys. B 834(3) (2010), 523–542.Google Scholar | DOI

[TW94] Tracy, C. A. and Widom, H., ‘Level-spacing distributions and the Airy kernel’, Comm. Math. Phys. 159(1) (1994), 151–174.Google Scholar | DOI

[TW96] Tracy, C. A. and Widom, H., ‘On orthogonal and symplectic matrix ensembles’, Comm. Math. Phys. 177(3) (1996), 727–754.Google Scholar | DOI

[TW03] Tracy, C. A. and Widom, H., ‘A system of differential equations for the Airy process’, Electron. Commun. Probab. 8 (2003), 93–98.Google Scholar | DOI

[ZS74] Zaharov, V. E. and Šabat, A. B., ‘A plan for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I’, Funktsional. Anal. i Prilozhen. 8(3) (1974), 43–53.Google Scholar

[ZS79] Zaharov, V. E. and Šabat, A. B., ‘Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem II’, Funktsional. Anal. i Prilozhen. 13(3) (1979), 13–22.Google Scholar

Cité par Sources :