Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2021_8,
     author = {Simon Felten and Matej Filip and Helge Ruddat},
     title = {Smoothing toroidal crossing spaces},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.8/}
}
                      
                      
                    Simon Felten; Matej Filip; Helge Ruddat. Smoothing toroidal crossing spaces. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.8
[1] , and , ‘Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces’, Publ. Math. Inst. Hautes Études Sci. 123 (2016), 199–282.Google Scholar | DOI
[2] and , Algebraic Methods in the Global Theory of Complex Spaces (Bucharest; John Wiley & Sons, London, 1976). Translated from Romanian.Google Scholar
[3] and , ‘Frobenius manifolds and formality of Lie algebras of polyvector fields’, Int. Math. Res. Notices 4 (1998), 201–215.Google Scholar | DOI
[4] and , ‘Tangent curves to degenerating hypersurfaces’ (2020). URL: .Google Scholar | arXiv
[5] , ‘Cartier isomorphism for toric varieties’, J. Algebra 237(1) (2001), 342–357.Google Scholar | DOI
[6] , and , ‘SYZ mirror symmetry for toric Calabi–Yau manifolds’, J. Differ. Geom. 90(2) (2012), 177–250.Google Scholar | DOI
[7] , and , ‘Geometry of the Maurer–Cartan equation near degenerate Calabi–Yau varieties’ (2015). URL: .Google Scholar | arXiv
[8] and , ‘Smoothing pairs over degenerate Calabi–Yau varieties’ (2019). URL: .Google Scholar | arXiv
[9] , , and , ‘Local mirror symmetry: calculations and interpretations’, Adv. Theor. Math. Phys. 3(3) (1999), 495–565.Google Scholar | DOI
[10] , , , and , ‘Mirror symmetry and Fano manifolds’, in European Congress of Mathematics (European Mathematical Society, Zürich, Switzerland, 2013), 285–300.Google Scholar | DOI
[11] , and , ‘Mirror symmetry and smoothing Gorenstein toric affine 3-folds’ (2020). URL: .Google Scholar | arXiv
[12] , ‘The geometry of toric varieties’, Uspekhi Mat. Nauk. 33(2) (1978), 85–134.Google Scholar
[13] and , ‘Relèvements modulo et décomposition du complexe de de Rham’, Invent. Math. 89(2) (1987), 247–270.Google Scholar | DOI
[14] , and , ‘Deformations of semi-smooth varieties’ (2020). URL: .Google Scholar | arXiv
[15] , ‘Log smooth deformation theory via Gerstenhaber algebras’, Manuscr. Math. (2020), 35 pages. URL: https://link.springer.com/article/10.1007/s00229-020-01255-6.Google Scholar | DOI
[16] , and , ‘Cosimplicial DGLAs in deformation theory’, Comm. Algebra, 40(6) (2012), 2243–2260.Google Scholar | DOI
[17] , ‘Global smoothings of varieties with normal crossings’, Ann. Math. 118(1) (1983), 75–114.Google Scholar | DOI
[18] , and , ‘Towards mirror symmetry for varieties of general type’, Adv. Math. 308 (2017), 208–275.Google Scholar | DOI
[19] and , ‘Mirror symmetry via logarithmic degeneration data. I’, J. Differ. Geom. 72(2) (2006), 169–338.Google Scholar | DOI
[20] and , ‘Mirror symmetry via logarithmic degeneration data, II’, J. Algebraic Geom. 19(4) (2010), 679–780.Google Scholar | DOI
[21] and , ‘From real affine geometry to complex geometry’, Ann. Math. 174 (2011), 1301–1428.Google Scholar | DOI
[22] , ‘Éléments de géométrie algébrique. I. Le langage des schémas’, Publ. Math. Inst. Hautes Etudes Sci. 4 (1960), 5–228.Google Scholar | DOI
[23] , ‘Techniques de construction en géométrie analytique. III. Produits fibrés d’espaces analytiques’, Séminaire Henri Cartan 13(1) (1960–1961), 1–11.Google Scholar
[24] , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II’, Publ. Math. Inst. Hautes Etudes Sci. 24(231) (1965), 5–231.Google Scholar
[25] , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III’, Publ. Math. Inst. Hautes Etudes Sci. 28(255) (1966), 5–255.Google Scholar | DOI
[26] and , ‘Examples of non-Kähler Calabi–Yau 3-folds with arbitrarily large b2’ (2019). URL: .Google Scholar | arXiv
[27] and , ‘Reflexive pull-backs and base extension’, J. Algebr. Geom. 13(2) (2004), 233–247.Google Scholar | DOI
[28] and , ‘An algebraic proof of Bogomolov–Tian–Todorov theorem’, in Deformation Spaces (Vieweg + Teubner, Wiesbaden, Germany, 2010), 113–133.Google Scholar | DOI
[29] , ‘Frobenius and Hodge degeneration. Introduction to Hodge theory’, in SMF/AMS Texts and Monographs, 8 (American Mathematical Society, Providence, RI, 2002). Translated from the 1996 French original by James Lewis and Peters, 96–145.Google Scholar
[30] , ‘Log smooth deformation theory’, Tohoku Math. J., Second Series, 48(3) (1996), 317–354.Google Scholar
[31] , ‘Log smooth deformation and moduli of log smooth curves’, Int. J. Math. 11(02) (2000), 215–232.Google Scholar | DOI
[32] , ‘Logarithmic structures of Fontaine–Illusie’, in Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), (Johns Hopkins University Press, Baltimore, MD, 1989), 191–224.Google Scholar
[33] , and , ‘Hodge theoretic aspects of mirror symmetry, in From Hodge Theory to Integrability and TQFT tt*-Geometry, Vol. 78 of Proc. Sympos. Pure Math (American Mathematical Society, Providence, RI, 2008), 87–174.Google Scholar | DOI
[34] and , ‘Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi–Yau varieties’, Invent. Math. 118(3) (1994), 395–409.Google Scholar | DOI
[35] , ‘d-Semistable Calabi–Yau threefolds of type III’, Manuscr. Math. 161 (2020), 257–281.Google Scholar | DOI
[36] , ‘An example of non-Kähler Calabi–Yau fourfold’ (2021). URL: .Google Scholar | arXiv
[37] , and , Applications of the Affine Structures on the Teichmüller Spaces, Vol. 154 of Springer Proc. Math. Stat (Springer, [Tokyo], 2016).Google Scholar
[38] and , ‘Relative rounding in toric and logarithmic geometry’, Geom. Topol. 14(4) (2010), 2189–2241.Google Scholar | DOI
[39] , Lectures on Logarithmic Algebraic Geometry , Vol. 178 of Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge CB2 8BS, UK, 2018).Google Scholar
[40] , ‘Universal log structures on semi-stable varieties’, Tohoku Math. J. (2) 55(3) (2003), 397–438.Google Scholar | DOI
[41] ‘Log Hodge groups on a toric Calabi–Yau degeneration’, in Mirror Symmetry and Tropical Geometry, No. 527 in Contemporary Mathematics (American Mathematical Society, Providence, RI, 2010), 113–164.Google Scholar | DOI
[42] , ‘Local uniqueness of approximations and finite determinacy of log morphisms’ (2018).Google Scholar | arXiv
[43] and , ‘Period integrals from wall structures via tropical cycles, canonical coordinates in mirror symmetry and analyticity of toric degenerations’, Publ. Math. Inst. Hautes Études Sci. 132 (2020), 1–82.Google Scholar | DOI
[44] and , ‘Toroidal crossings and logarithmic structures’, Adv. Math. 202(1) (2006), 189–231.Google Scholar | DOI
[45] , ‘Mixed Hodge structure on the vanishing cohomology’, in Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 525–563.Google Scholar
[46] , ‘Logarithmic embeddings of varieties with normal crossings and mixed Hodge structures’, Math. Ann. 301(1) (1995), 105–118.Google Scholar | DOI
[47] The Stacks Project Authors, Stacks project. URL: http://stacks.math.columbia.edu/.Google Scholar
[48] , ‘ -Adic étale cohomology and crystalline cohomology in the semi-stable reduction case’, Invent. Math. 137(2) (1999), 233–411.Google Scholar | DOI
[49] , ‘Poincaré duality for logarithmic crystalline cohomology’, Compositio Math. 118(1) (1999), 11–41.Google Scholar | DOI
[50] , ‘Saturated morphisms of logarithmic schemes’, Tunis. J. Math. 1(2) (2019), 185–220.Google Scholar | DOI
[51] ‘Smoothings of Fano varieties with normal crossing singularities’, Proc. Edinb. Math. Soc. (2) 58(3) (2015), 787–806.Google Scholar | DOI
[52] , Global Smoothings of Degenerate K3 Surfaces with Triple Points (2020). URL: .Google Scholar | arXiv
[53] , ‘Notes on diffeomorphism classes of the doubling Calabi–Yau threefolds’ (2021). URL: .Google Scholar | arXiv
Cité par Sources :