Endoscopic decompositions and the Hausel–Thaddeus conjecture
Forum of Mathematics, Pi, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning $\mathrm {SL}_n$- and $\mathrm {PGL}_n$-Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable $\mathrm {SL}_n$-Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via p-adic integration.Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.
@article{10_1017_fmp_2021_7,
     author = {Davesh Maulik and Junliang Shen},
     title = {Endoscopic decompositions and the {Hausel{\textendash}Thaddeus} conjecture},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.7/}
}
TY  - JOUR
AU  - Davesh Maulik
AU  - Junliang Shen
TI  - Endoscopic decompositions and the Hausel–Thaddeus conjecture
JO  - Forum of Mathematics, Pi
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.7/
DO  - 10.1017/fmp.2021.7
LA  - en
ID  - 10_1017_fmp_2021_7
ER  - 
%0 Journal Article
%A Davesh Maulik
%A Junliang Shen
%T Endoscopic decompositions and the Hausel–Thaddeus conjecture
%J Forum of Mathematics, Pi
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.7/
%R 10.1017/fmp.2021.7
%G en
%F 10_1017_fmp_2021_7
Davesh Maulik; Junliang Shen. Endoscopic decompositions and the Hausel–Thaddeus conjecture. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.7

[1] Atiyah, M. and Bott, R., ‘The Yang-Mills equations over Riemann surfaces’, Philos. Trans. Roy. Soc. A 308(1505) (1983), 523–615.Google Scholar

[2] Beauville, A., ‘Sur la cohomologie de certains espaces de modules de fibrés vectoriels’, in Geometry and Analysis (Bombay, 1992) (Tata Institute of Fundamental Research, Bombay, 1995), 37–40.Google Scholar

[3] Beĭlinson, A. A., Bernstein, J. and Deligne, P., ‘Faisceaux pervers’, in Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque vol. 100 (Société mathématique de France, Paris, 1982), 5–171.Google Scholar

[4] Biswas, I. and Ramanan, S., ‘An infinitesimal study of the moduli of Hitchin pairs’, J. Lond. Math. Soc. (2) 49 (1994), 219–231.Google Scholar | DOI

[5] Chaudouard, P.-H. and Laumon, G., ‘Un théorème du support pour la fibration de Hitchin’, Ann. Inst. Fourier, Grenoble 66(2) (2016), 711–727.Google Scholar | DOI

[6] De Cataldo, M. A., ‘A support theorem for the Hitchin fibration: The case of ’, Compos. Math. 153 (2017), 1316–1347.Google Scholar | DOI

[7] De Cataldo, M. A., Hausel, T. and Migliorini, L., ‘Topology of Hitchin systems and Hodge theory of character varieties: The case ’, Ann. of Math. (2) 175(3) (2012), 1329–1407.Google Scholar | DOI

[8] De Cataldo, M. A., Heinloth, J. and Migliorini, L., ‘A support theorem for the Hitchin fibration: The case of and ’, Preprint, 2019, arXiv:1906.09582.Google Scholar

[9] De Cataldo, M. A., Maulik, D. and Shen, J., ‘Hitchin fibrations, abelian surfaces, and the conjecture’, Preprint, 2019, arXiv:1909.11885.Google Scholar

[10] De Cataldo, M. A., Maulik, D. and Shen, J., ‘On the P=W conjecture for ’, Preprint, 2020, arXiv:2002.03336.Google Scholar

[11] De Cataldo, M. A. and Migliorini, L., ‘The Hodge theory of algebraic maps’, Ann. Sci. Éc. Norm. Supér. (4) 38(5) (2005), 693–750.Google Scholar

[12] De Cataldo, M. A., Rapagnetta, A. and Saccà, G., ‘The Hodge numbers of O’Grady 10 via Ngô strings’, Preprint, 2019, arXiv:1905.03217.Google Scholar

[13] Dimca, A., Sheaves in Topology (Springer–Verlag, Berlin, 2004).Google Scholar | DOI

[14] Earl, R. and Kirwan, F., ‘Complete sets of relations in the cohomology rings of moduli spaces of holomorphic bundles and parabolic bundles over a Riemann surface’, Proc. Lond. Math. Soc. (3) 89(3) (2004), 570–622.Google Scholar | DOI

[15] Franco, E., Gothen, P. B., Oliveira, A. and Peón-Netao, A., ‘Unramified covers and branes on the Hitchin system’, Adv. Math. 377 (2021), 22.Google Scholar

[16] Gothen, P. B. and King, A. D., ‘Homological algebra of twisted quiver bundles’, J. Lond. Math. Soc. (2) 71 (2005), 85–99.Google Scholar

[17] Groechenig, M., Wyss, D. and Ziegler, P., ‘Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration’, Invent. Math. 221 (2020), 505–596.Google Scholar | DOI

[18] Groechenig, M., Wyss, D. and Ziegler, P., ‘Geometric stabilisation via -adic integration’, J. Amer. Math. Soc. 33(3) (2020), 807–873.Google Scholar

[19] Harder, G. and Narasimhan, M. S., ‘On the cohomology groups of moduli spaces of vector bundles on curves’, Math. Ann. 212 (1974/75), 215–248.Google Scholar | DOI

[20] Hausel, T., ‘Global topology of the Hitchin system’, in Handbook of Moduli, Vol. II, Advanced Lectures in Mathematics vol. 25 (International Press, Somerville, MA, 2013), 29–69.Google Scholar

[21] Hausel, T. and Pauly, C., ‘Prym varieties of spectral covers’, Geom. Topol. 16(3) (2012), 1609–1638.Google Scholar | DOI

[22] Hausel, T. and Thaddeus, M., ‘Mirror symmetry, Langlands duality, and the Hitchin system’, Invent. Math. 153(1) (2003), 197–229.Google Scholar | DOI

[23] Hausel, T. and Thaddeus, M., ‘Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles’, J. Amer. Math. Soc. 16(2) (2003), 303–327.Google Scholar | DOI

[24] Hitchin, N. J., ‘The self-duality equations on a Riemann surface’, Proc. Lond. Math. Soc. (3) 55(1) (1987), 59–126.Google Scholar | DOI

[25] Hitchin, N. J., ‘Stable bundles and integrable systems’, Duke Math. J. 54 (1987), 91–114.Google Scholar | DOI

[26] Illusie, L., ‘Vanishing cycles over general bases, after Deligne, P., Gabber, O., Laumon, G. and Orgogozo, F.’, Preprint, 2006, URL: http://www.math.u-psud.fr/illusie/vanishing1b.pdf.Google Scholar

[27] Kirwan, F. C., ‘The cohomology rings of moduli spaces of bundles over Riemann surfaces’, J. Amer. Math. Soc. 5 (1992), 853–906.Google Scholar | DOI

[28] Laumon, G. and Ngô, B. C., ‘Le lemme fondamental pour les groupes unitaires’, Ann. of Math. (2) 168 (2008), 477–573.Google Scholar | DOI

[29] Loeser, F. and Wyss, D., ‘Motivic integration on the Hitchin fibration’, Preprint, 2019, arXiv:1912.11638v2.Google Scholar

[30] Markman, E., ‘Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces’, J. Reine Angew. Math. (544) (2002), 61–82.Google Scholar

[31] Milnor, J. W., Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies vol 61 (Publisher, Location, 1968).Google Scholar

[32] Ngô, B. C., ‘Fibration de Hitchin et endoscopie’, Invent. Math. 164(2) (2006), 399–453.Google Scholar | DOI

[33] Ngô, B. C., ‘Le lemme fondamental pour les algèbres de Lie’, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1–169.Google Scholar | DOI

[34] Nitsure, N., ‘Moduli space of semistable pairs on a curve’, Proc. Lond. Math. Soc. (3) 62(2) (1991), 275–300.Google Scholar | DOI

[35] Saito, M., ‘Mixed Hodge modules’, Publ. Res. Inst. Math. Sci. 26(2) (1990), 221–333.Google Scholar | DOI

[36] Simpson, C. T., ‘Higgs bundles and local systems’, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 5–95.Google Scholar | DOI

[37] Simpson, C. T., ‘Moduli of representations of the fundamental group of smooth projective varieties II’, Publ. Math. Inst. Hautes Études Sci. 80 (1994), 5–79.Google Scholar | DOI

[38] Yun, Z., ‘Global Springer theory’, Adv. Math. 228 (2011), 266–328.Google Scholar | DOI

[39] Yun, Z., ‘Towards a global springer theory III: Endoscopy and Langlands duality’, Preprint, 2009, arXiv:0904.3372.Google Scholar

Cité par Sources :