Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2021_7,
author = {Davesh Maulik and Junliang Shen},
title = {Endoscopic decompositions and the {Hausel{\textendash}Thaddeus} conjecture},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {9},
year = {2021},
doi = {10.1017/fmp.2021.7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.7/}
}
Davesh Maulik; Junliang Shen. Endoscopic decompositions and the Hausel–Thaddeus conjecture. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.7
[1] and , ‘The Yang-Mills equations over Riemann surfaces’, Philos. Trans. Roy. Soc. A 308(1505) (1983), 523–615.Google Scholar
[2] , ‘Sur la cohomologie de certains espaces de modules de fibrés vectoriels’, in Geometry and Analysis (Bombay, 1992) (Tata Institute of Fundamental Research, Bombay, 1995), 37–40.Google Scholar
[3] , and , ‘Faisceaux pervers’, in Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque vol. 100 (Société mathématique de France, Paris, 1982), 5–171.Google Scholar
[4] and , ‘An infinitesimal study of the moduli of Hitchin pairs’, J. Lond. Math. Soc. (2) 49 (1994), 219–231.Google Scholar | DOI
[5] and , ‘Un théorème du support pour la fibration de Hitchin’, Ann. Inst. Fourier, Grenoble 66(2) (2016), 711–727.Google Scholar | DOI
[6] , ‘A support theorem for the Hitchin fibration: The case of ’, Compos. Math. 153 (2017), 1316–1347.Google Scholar | DOI
[7] , and , ‘Topology of Hitchin systems and Hodge theory of character varieties: The case ’, Ann. of Math. (2) 175(3) (2012), 1329–1407.Google Scholar | DOI
[8] , and , ‘A support theorem for the Hitchin fibration: The case of and ’, Preprint, 2019, arXiv:1906.09582.Google Scholar
[9] , and , ‘Hitchin fibrations, abelian surfaces, and the conjecture’, Preprint, 2019, arXiv:1909.11885.Google Scholar
[10] , and , ‘On the P=W conjecture for ’, Preprint, 2020, arXiv:2002.03336.Google Scholar
[11] and , ‘The Hodge theory of algebraic maps’, Ann. Sci. Éc. Norm. Supér. (4) 38(5) (2005), 693–750.Google Scholar
[12] , and , ‘The Hodge numbers of O’Grady 10 via Ngô strings’, Preprint, 2019, arXiv:1905.03217.Google Scholar
[13] , Sheaves in Topology (Springer–Verlag, Berlin, 2004).Google Scholar | DOI
[14] and , ‘Complete sets of relations in the cohomology rings of moduli spaces of holomorphic bundles and parabolic bundles over a Riemann surface’, Proc. Lond. Math. Soc. (3) 89(3) (2004), 570–622.Google Scholar | DOI
[15] , , and , ‘Unramified covers and branes on the Hitchin system’, Adv. Math. 377 (2021), 22.Google Scholar
[16] and , ‘Homological algebra of twisted quiver bundles’, J. Lond. Math. Soc. (2) 71 (2005), 85–99.Google Scholar
[17] , and , ‘Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration’, Invent. Math. 221 (2020), 505–596.Google Scholar | DOI
[18] , and , ‘Geometric stabilisation via -adic integration’, J. Amer. Math. Soc. 33(3) (2020), 807–873.Google Scholar
[19] and , ‘On the cohomology groups of moduli spaces of vector bundles on curves’, Math. Ann. 212 (1974/75), 215–248.Google Scholar | DOI
[20] , ‘Global topology of the Hitchin system’, in Handbook of Moduli, Vol. II, Advanced Lectures in Mathematics vol. 25 (International Press, Somerville, MA, 2013), 29–69.Google Scholar
[21] and , ‘Prym varieties of spectral covers’, Geom. Topol. 16(3) (2012), 1609–1638.Google Scholar | DOI
[22] and , ‘Mirror symmetry, Langlands duality, and the Hitchin system’, Invent. Math. 153(1) (2003), 197–229.Google Scholar | DOI
[23] and , ‘Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles’, J. Amer. Math. Soc. 16(2) (2003), 303–327.Google Scholar | DOI
[24] , ‘The self-duality equations on a Riemann surface’, Proc. Lond. Math. Soc. (3) 55(1) (1987), 59–126.Google Scholar | DOI
[25] , ‘Stable bundles and integrable systems’, Duke Math. J. 54 (1987), 91–114.Google Scholar | DOI
[26] , ‘Vanishing cycles over general bases, after , , and ’, Preprint, 2006, URL: http://www.math.u-psud.fr/illusie/vanishing1b.pdf.Google Scholar
[27] , ‘The cohomology rings of moduli spaces of bundles over Riemann surfaces’, J. Amer. Math. Soc. 5 (1992), 853–906.Google Scholar | DOI
[28] and , ‘Le lemme fondamental pour les groupes unitaires’, Ann. of Math. (2) 168 (2008), 477–573.Google Scholar | DOI
[29] and , ‘Motivic integration on the Hitchin fibration’, Preprint, 2019, arXiv:1912.11638v2.Google Scholar
[30] , ‘Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces’, J. Reine Angew. Math. (544) (2002), 61–82.Google Scholar
[31] , Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies vol 61 (Publisher, Location, 1968).Google Scholar
[32] , ‘Fibration de Hitchin et endoscopie’, Invent. Math. 164(2) (2006), 399–453.Google Scholar | DOI
[33] , ‘Le lemme fondamental pour les algèbres de Lie’, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1–169.Google Scholar | DOI
[34] , ‘Moduli space of semistable pairs on a curve’, Proc. Lond. Math. Soc. (3) 62(2) (1991), 275–300.Google Scholar | DOI
[35] , ‘Mixed Hodge modules’, Publ. Res. Inst. Math. Sci. 26(2) (1990), 221–333.Google Scholar | DOI
[36] , ‘Higgs bundles and local systems’, Publ. Math. Inst. Hautes Études Sci. 75 (1992), 5–95.Google Scholar | DOI
[37] , ‘Moduli of representations of the fundamental group of smooth projective varieties II’, Publ. Math. Inst. Hautes Études Sci. 80 (1994), 5–79.Google Scholar | DOI
[38] , ‘Global Springer theory’, Adv. Math. 228 (2011), 266–328.Google Scholar | DOI
[39] , ‘Towards a global springer theory III: Endoscopy and Langlands duality’, Preprint, 2009, arXiv:0904.3372.Google Scholar
Cité par Sources :