On the derivation of the wave kinetic equation for NLS
Forum of Mathematics, Pi, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

A fundamental question in wave turbulence theory is to understand how the wave kinetic equation describes the long-time dynamics of its associated nonlinear dispersive equation. Formal derivations in the physics literature, dating back to the work of Peierls in 1928, suggest that such a kinetic description should hold (for well-prepared random data) at a large kinetic time scale $T_{\mathrm {kin}} \gg 1$ and in a limiting regime where the size L of the domain goes to infinity and the strength $\alpha $ of the nonlinearity goes to $0$ (weak nonlinearity). For the cubic nonlinear Schrödinger equation, $T_{\mathrm {kin}}=O\left (\alpha ^{-2}\right )$ and $\alpha $ is related to the conserved mass $\lambda $ of the solution via $\alpha =\lambda ^2 L^{-d}$.In this paper, we study the rigorous justification of this monumental statement and show that the answer seems to depend on the particular scaling law in which the $(\alpha , L)$ limit is taken, in a spirit similar to how the Boltzmann–Grad scaling law is imposed in the derivation of Boltzmann’s equation. In particular, there appear to be two favourable scaling laws: when $\alpha $ approaches $0$ like $L^{-\varepsilon +}$ or like $L^{-1-\frac {\varepsilon }{2}+}$ (for arbitrary small $\varepsilon $), we exhibit the wave kinetic equation up to time scales $O(T_{\mathrm {kin}}L^{-\varepsilon })$, by showing that the relevant Feynman-diagram expansions converge absolutely (as a sum over paired trees). For the other scaling laws, we justify the onset of the kinetic description at time scales $T_*\ll T_{\mathrm {kin}}$ and identify specific interactions that become very large for times beyond $T_*$. In particular, the relevant tree expansion diverges absolutely there. In light of those interactions, extending the kinetic description beyond $T_*$ toward $T_{\mathrm {kin}}$ for such scaling laws seems to require new methods and ideas.
@article{10_1017_fmp_2021_6,
     author = {Yu Deng and Zaher Hani},
     title = {On the derivation of the wave kinetic equation for {NLS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.6/}
}
TY  - JOUR
AU  - Yu Deng
AU  - Zaher Hani
TI  - On the derivation of the wave kinetic equation for NLS
JO  - Forum of Mathematics, Pi
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.6/
DO  - 10.1017/fmp.2021.6
LA  - en
ID  - 10_1017_fmp_2021_6
ER  - 
%0 Journal Article
%A Yu Deng
%A Zaher Hani
%T On the derivation of the wave kinetic equation for NLS
%J Forum of Mathematics, Pi
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.6/
%R 10.1017/fmp.2021.6
%G en
%F 10_1017_fmp_2021_6
Yu Deng; Zaher Hani. On the derivation of the wave kinetic equation for NLS. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.6

[1] Aubourg, Q., Campagne, A., Peureux, C., Ardhuin, F., Sommeria, J., Viboud, S. and Mordant, N., ‘Three-wave and four-wave interactions in gravity wave turbulence’, Phys. Rev. Fluids 2 (2017), 114802.Google Scholar | DOI

[2] Bényi, A., Oh, T. and Pocovnicu, O., ‘Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ’, Trans. Amer. Math. Soc. Ser. B 6(4) (2019), 114–160.Google Scholar | DOI

[3] Bourgain, J., ‘Invariant measures for the 2D-defocusing nonlinear Schrödinger equation’, Comm. Math. Phys. 176 (1996), 421–445.Google Scholar | DOI

[4] Bourgain, J., ‘On pair correlation for generic diagonal forms’, Preprint, 2016, arXiv:1606.06173.Google Scholar

[5] Bourgain, J. and Bulut, A., ‘Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case’, J. Eur. Math. Soc. 16(6) (2014), 1289–1325.Google Scholar | DOI

[6] Buckmaster, T., Germain, P., Hani, Z. and Shatah, J., ‘Effective dynamics of the nonlinear Schrödinger equation on large domains’, Comm. Pure Appl. Math. 71 (2018), 1407–1460.Google Scholar | DOI

[7] Buckmaster, T., Germain, P., Hani, Z. and Shatah, J., ‘Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation’, Preprint, 2019, arXiv:1907.03667.Google Scholar

[8] Burq, N. and Tzvetkov, N., ‘Random data Cauchy theory for supercritical wave equations I: Local theory’, Invent. Math. 173(3) (2008), 449–475.Google Scholar | DOI

[9] Cassels, J. W. S., An Introduction to Diophantine Approximation , Cambridge Tracts in Mathematics and Mathematical Physics vol. 45 (Hafner Publishing Co., New York, 1972). Facsimile reprint of the 1957 edition.Google Scholar

[10] Cercignani, C., Illner, R. and Pulvirenti, M., The Mathematical Theory of Dilute Gases, (Springer, Berlin, 1994).Google Scholar | DOI

[11] Colliander, J. and Oh, T., ‘Almost sure well-posedness of the cubic nonlinear Schrödinger equation below ’, Duke Math. J 161(3) (2012), 367–414.Google Scholar | DOI

[12] Collot, C. and Germain, P., ‘On the derivation of the homogeneous kinetic wave equation’, Preprint, 2019, arXiv:1912.10368.Google Scholar

[13] Collot, C. and Germain, P., ‘Derivation of the homogeneous kinetic wave equation: Longer time scales’, Preprint, 2020, arXiv:2007.03508.Google Scholar

[14] Da Prato, G. and Debussche, A., ‘Two-dimensional Navier-Stokes equations driven by a space-time white noise’, J. Funct. Anal. 196(1) (2002), 180–210.Google Scholar | DOI

[15] Deng, Y., ‘Two dimensional nonlinear Schrödinger equation with random radial data’, Anal. PDE 5(5) (2012), 913–960.Google Scholar | DOI

[16] Deng, Y. and Hani, Z., ‘Full derivation of the wave kinetic equation’, Preprint, 2021, arXiv:2104.11204.Google Scholar

[17] Deng, Y., Nahmod, A. R. and Yue, H., ‘Optimal local well-posedness for the periodic derivative nonlinear Schrödinger equation’, Preprint, 2019, arXiv:1905.04352.Google Scholar | DOI

[18] Deng, Y., Nahmod, A. R. and Yue, H., ‘Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two’, Preprint, 2019, arXiv1910.08492.Google Scholar

[19] Deng, Y., Nahmod, A. R. and Yue, H., ‘Random tensors, propagation of randomness, and nonlinear dispersive equations’, Preprint, 2020, arXiv:2006.09285.Google Scholar

[20] Denissenko, P., Lukaschuk, S. and Nazarenko, S., ‘Gravity wave turbulence in a laboratory flume, Phys. Rev. Lett. 99 (2007), 014501.Google Scholar | DOI

[21] Dodson, B., Lührmann, J. and Mendelson, D., ‘Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation’, Adv. Math. 347 (2019), 619–676.Google Scholar | DOI

[22] Dyachenko, S., Newell, A. C., Pushkarev, A. and Zakharov, V. E., ‘Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation’, Physica D: Nonlinear Phenomena, 57(1–2) (1992), 96–160.Google Scholar | DOI

[23] Faou, E., ‘Linearized wave turbulence convergence results for three-wave systems’, Preprint, 2018, arXiv:1805.11269.Google Scholar

[24] Faou, E., Germain, P. and Hani, Z., ‘The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation’, J. Amer. Math. Soc. (NN) (2015), 915–982.Google Scholar | DOI

[25] Fitzmaurice, N., Gurarie, D., Mccaughan, F. and Woyczynski, W. A. (eds), Nonlinear Waves and Weak Turbulence, with applications in Oceanography and Condensed Matter Physics (Springer Science+Business Media, New York (1993).Google Scholar | DOI

[26] Gallagher, I., Saint-Raymond, L. and Texier, B., From Newton to Boltzmann: The Case of Hard-Spheres and Short-Range Potentials vol. 18, (European Mathematical Society, Zürich, 2014).Google Scholar | DOI

[27] Grad, H., ‘Principles of the kinetic theory of gases, in Handbuch der Physik, Vol. 12 (Springer, Berlin, 1958), 205–294.Google Scholar

[28] Gubinelli, M., Imkeller, P. and Perkowski, N., ‘Paracontrolled distributions and singular PDEs’, Forum Math Pi 3 (2015), e6.Google Scholar | DOI

[29] Hairer, M., ‘A theory of regularity structures’, Invent. Math. 198(2) (2014), 269–504.Google Scholar | DOI

[30] Iwaniec, H. and Kowalski, E., Analytic Number Theory, AMS Colloquium Publications, American Math. Society, 53(2004).Google Scholar | DOI

[31] Janssen, P. A., ‘Progress in ocean wave forecasting’, J. Comput. Phys. 227(7) (2008), 3572–3594.Google Scholar | DOI

[32] Kartashova, E.Exact and quasiresonances in discrete water wave turbulence’, Phys. Rev. Lett. 98(21) (2007), 214502.Google ScholarPubMed | DOI

[33] Kenig, C. and Mendelson, D., ‘The focusing energy-critical nonlinear wave equation with random initial data’, International Mathematics Research Notices, 2019.Google Scholar | DOI

[34] Lanford, O. E., Time Evolution of Large Classical Systems, Lecture Notes in Physics vol. 38 (Springer, Heidelberg, 1975).Google Scholar

[35] Lukkarinen, J. and Spohn, H., ‘Weakly nonlinear Schrödinger equation with random initial data’, Invent. Math. 183 (2011), 79–188.Google Scholar | DOI

[36] L’Vov, V. S. and Nazarenko, S., ‘Discrete and mesoscopic regimes of finite-size wave turbulence’, Phys. Rev. E 82 (2010), 056322.Google ScholarPubMed | DOI

[37] Minlos, R. A., Introduction to Mathematical Statistical Physics, University Lecture Series vol.: 19 (American Math Society, Providence, 2000).Google Scholar

[38] Nahmod, N. and Staffilani, G., ‘Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space’, J. Eur. Math. Soc. (JEMS) 17(7) (2015), 1687–1759.Google Scholar | DOI

[39] Nazarenko, S., Wave Turbulence, Lecture Notes in Physics vol. 825 (Springer, Heidelberg, 2011).Google Scholar | DOI

[40] Oh, T. and Thomann, L., ‘A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations’, Stoch. Partial Differ. Equ. Anal. Comput. 6(3) (2018), 397–445.Google ScholarPubMed

[41] Peierls, R.E., ‘Zur kinetischen Theorie der Wärmeleitung in Kristallen’, Ann. Phys. 3 (1929), 1055–1101.Google Scholar | DOI

[42] Ruelle, D., Statistical Mechanics: Rigorous Results, 2nd edn (World Scientific Publishing, Singapore, 1999).Google Scholar | DOI

[43] Spohn, H., ‘Kinetic equations from Hamiltonian dynamics: Markovian limits’, Rev. Modern Phys. 63(3) (1980), 569–615.Google Scholar | DOI

[44] Spohn, H., Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics (Springer Verlag, Heidelberg, 1991).Google Scholar | DOI

[45] Spohn, H., ‘The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics’, J. Stat. Phys. 124 (2006), 1041–1104.Google Scholar | DOI

[46] Spohn, H., ‘On the Boltzmann equation for weakly nonlinear wave equations’, in Boltzmann’s Legacy, ESI Lectures in Mathematics and Physics (Zürich, Switzerland: European Mathematical Society 2008) 145–159.Google Scholar | DOI

[47] Staffilani, G. and Tran, M.-B., ‘On the wave turbulence theory for stochastic and random multidimensional KdV type equations’, Unpublished manuscript.Google Scholar

[48] Tzvetkov, N., ‘Quasi-invariant Gaussian measures for one-dimensional Hamiltonian partial differential equations’, Forum Math. Sigma (2015), e28.Google Scholar

[49] Burns, T., et al. Guide to Wave Analysis and Forecasting (Secretariat of the World Meteorological Organization, Geneva, 1998).Google Scholar

[50] Zakharov, V. E., Korotkevich, A. O., Pushkarev, A. and Resio, D., ‘Coexistence of weak and strong wave turbulence in a swell propagation’, Phys. Rev. Lett. 99 (2007), 164501.Google Scholar | DOI

[51] Zakharov, V. E., L’Vov, V. S. and Falkovich, G., Kolmogorov Spectra of Turbulence: I WaveTurbulence (Springer, Berlin, 1992).Google Scholar | DOI

Cité par Sources :