Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2021_5,
     author = {Syu Kato},
     title = {Frobenius splitting of {Schubert} varieties of semi-infinite flag manifolds},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.5/}
}
                      
                      
                    Syu Kato. Frobenius splitting of Schubert varieties of semi-infinite flag manifolds. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.5
[1] , and , ‘Representations of quantum algebras’, Invent. Math. 104 (1991), 1–59.Google Scholar | DOI
[2] , , , and , ‘Modules over the small quantum group and semi-infinite flag manifold’, Transform. Groups 10(3–4) (2005), 279–362.Google Scholar | DOI
[3] and , ‘Conformal blocks and generalized theta functions’, Comm. Math. Phys. 164(2) (1994), 385–419.Google Scholar | DOI
[4] , and , ‘An algebraic characterization of the affine canonical basis’, Duke Math. J. 99(3) (1999), 455–487.Google Scholar | DOI
[5] and , ‘Crystal bases and two-sided cells of quantum affine algebras’, Duke Math. J. 123(2) (2004), 335–402.Google Scholar | DOI
[6] and , ‘Stacks of stable maps and Gromov-Witten invariants’, Duke Math. J. 85(1) (1996), 1–60.Google Scholar | DOI
[7] , ‘Spaces of quasi-maps into the flag varieties and their applications’, in International Congress of Mathematicians, Vol. II (European Mathematical Society, Zürich, 2006), 1145–1170.Google Scholar
[8] , , and , ‘A finite analog of the AGT relation I: Finite -algebras and quasimaps’ spaces’, Comm. Math. Phys. 308(2) (2011), :457–478.Google Scholar | DOI
[9] and , ‘Semi-infinite Schubert varieties and quantum -theory of flag manifolds’, J. Amer. Math. Soc. 27(4) (2014), 1147–1168.Google Scholar | DOI
[10] and , ‘Weyl modules and -Whittaker functions’, Math. Ann. 359(1-2) (2014), 45–59.Google Scholar | DOI
[11] and , ‘Twisted zastava and -Whittaker functions’, J. London Math. Soc. (2) 96(2) (2017), 309–325.Google Scholar | DOI
[12] , , and , ‘Intersection cohomology of Drinfeld’s compactifications’, Selecta Math. (N.S.) 8(3) (2002), 381–418.Google Scholar | DOI
[13] and , ‘Geometric Eisenstein series’, Invent. Math. 150(2) (2002), 287–384.Google Scholar | DOI
[14] and , Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics vol. 231 (Birkhäuser Boston, Inc., Boston, MA, 2005).Google Scholar | DOI
[15] and , ‘A geometric approach to standard monomial theory’, Represent. Theory 7 (2003), 651–680.Google Scholar | DOI
[16] , , and , ‘Finiteness of cominuscule quantum -theory’, Ann. Sci. Éc. Norm. Supér. (4) 46(3) (2013), 477–494.Google Scholar | DOI
[17] , and , ‘A categorical approach to Weyl modules’, Transform. Groups 15 (2010), 517–549.Google Scholar | DOI
[18] and , ‘BGG reciprocity for current algebras’, Compos. Math. 151(7) (2015), 1265–1287.Google Scholar | DOI
[19] and , ‘Weyl modules for classical and quantum affine algebras’, Represent. Theory 5 (2001), 191–223.Google Scholar | DOI
[20] and , ‘Nonsymmetric Rogers-Ramanujan sums and thick Demazure modules’, Adv. Math. (2020), 107335.Google Scholar | DOI
[21] and , Representation Theory and Complex Geometry, Modern Birkhäuser Classics (Birkhäuser Boston, Inc., Boston, MA, 2010). Reprint of the 1997 edition.Google Scholar
[22] , ‘Algebraic loop groups and moduli spaces of bundles’, J. Eur. Math. Soc. (JEMS) 5(1) (2003), 41–68.Google Scholar | DOI
[23] , , and , ‘Semi-infinite flags. II. Local and global intersection cohomology of quasimaps’ spaces’, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Translations Series 2 vol. 194 of Amer. Math. Soc. Transl. Ser. 2 (American Mathematical Society, Providence, RI, 1999), 113–148.Google Scholar
[24] and , ‘Affine Kac-Moody algebras and semi-infinite flag manifold’, Comm. Math. Phys. 128 (1990), 161–189.Google Scholar
[25] , and , ‘Representation theoretic realization of non-symmetric Macdonald polynomials at infinity’, J. Reine Angew. Math. 764 (2020), 181–216.Google Scholar | DOI
[26] and , ‘Vertex algebras and coordinate rings of semi-infinite flags’, Comm. Math. Phys. 369(1) (2019), 221–244.Google Scholar | DOI
[27] and , ‘Semi-infinite Plücker relations and Weyl modules’, Int. Math. Res. Not. IMRN (14) (2020), 4357–4394.Google Scholar | DOI
[28] , and , ‘Generalized Weyl modules and nonsymmetric -Whittaker functions’, Adv. Math. 339 (2018), 997–1033.Google Scholar | DOI
[29] and , ‘Semi-infinite flags. I. Case of global curve ’, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Translations Series 2 vol. 194 (American Mathematical Society, Providence, RI, 1999), 81–112.Google Scholar
[30] and , ‘Notes on stable maps and quantum cohomology’, in Algebraic Geometry: Santa Cruz 1995 (American Mathematical Society, Providence, RI, 1995), Proc. Sympos. Pure Math., 62, Part 2, 45–96.Google Scholar
[31] , ‘The arithmetic theory of loop algebras’, J. Algebra 53 (1978), 480–551.Google Scholar | DOI
[32] , ‘Homological geometry and mirror symmetry’, in Proceedings of the International Congress of Mathematicians 1994 (Birkhäuser, Basel, 1995), 472–480.Google Scholar | DOI
[33] and , ‘Quantum -theory on flag manifolds, finite-difference Toda lattices and quantum groups’, Invent. Math. 151(1) (2003), 193–219.Google Scholar | DOI
[34] , ‘Equivariant Gromov-Witten invariants’, Int. Math. Res. Not. IMRN 13 (1996), 613–663.Google Scholar | DOI
[35] and , ‘A comparison of bases of quantized enveloping algebras’, in Linear Algebraic Groups and Their Representations (Los Angeles, CA, 1992), Contemporary Mathematics vol. 153 (American Mathematical Society, Providence, RI, 1993), 11–19.Google Scholar
[36] , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III’, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5–255.Google Scholar | DOI
[37] , Algebraic Geometry, Graduate Texts in Mathematics vol. 52 (Springer-Verlag, New York, 1977).Google Scholar | DOI
[38] and , ‘On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups’, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 5–48.Google Scholar | DOI
[39] , ‘On the Demazure character formula’, Ann. Sci. Éc. Norm. Supér. (4) 18(3) (1985), 389–419.Google Scholar | DOI
[40] , Infinite-Dimensional Lie Algebras, third edn (Cambridge University Press, Cambridge, UK, 1990).Google Scholar | DOI
[41] , ‘On crystal bases of the q-analogue of universal enveloping algebras’, Duke Math. J. 63(2) (1991), 465–516.Google Scholar | DOI
[42] , ‘The crystal base and Littelmann’s refined Demazure character formula’, Duke Math. J. 71(3) (1993), 839–858.Google Scholar | DOI
[43] , ‘Crystal bases of modified quantized enveloping algebra’, Duke Math. J. 73(2) (1994), 383–413.Google Scholar | DOI
[44] , ‘On level-zero representations of quantized affine algebras’, Duke Math. J. 112(1) (2002), 117–175.Google Scholar | DOI
[45] , ‘Level zero fundamental representations over quantized affine algebras and Demazure modules’, Publ. Res. Inst. Math. Sci. 41(1) (2005), 223–250.Google Scholar | DOI
[46] , ‘Demazure character formula for semi-infinite flag varieties’, Math. Ann. 371(3) (2018), 1769–1801.Google Scholar | DOI
[47] , ‘Loop structure on equivariant -theory of semi-infinite flag manifolds’, Preprint, 2018, arXiv:1805.01718v6.Google Scholar
[48] , ‘On quantum -groups of partial flag manifolds’, Preprint, 2019, arXiv:1906.09343.Google Scholar
[49] , ‘Frobenius splitting of thick flag manifolds of Kac-Moody algebras’, Int. Math. Res. Not. IMRN 2020(17) (2020), 5401–5427.Google Scholar | DOI
[50] and , ‘A Weyl module stratification of integrable representations’, Comm. Math. Phys. 368 (2019), 113–141.Google Scholar | DOI
[51] , and , ‘Equivariant -theory of semi-infinite flag manifolds and the Pieri-Chevalley formula’, Duke Math. J. 169(13) (2020), 2421–2500.Google Scholar | DOI
[52] , ‘Linear systems on homogeneous spaces’, Ann. of Math. (2) 103(3) (1976), 557–591.Google Scholar | DOI
[53] and , ‘The connectedness of the moduli space of maps to homogeneous spaces’, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000) (World Scientific Publishing, River Edge, NJ, 2001), 187–201.Google Scholar | DOI
[54] , ‘The transversality of a general translate’, Compos. Math. 28(3) (1974), 287–297.Google Scholar
[55] and , Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics vol. 134 (Cambridge University Press, Cambridge, UK, 1998). With the collaboration of and , translated from the 1998 Japanese original.Google Scholar | DOI
[56] and , ‘Gromov-Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys. 164(3) (1994), 525–562.Google Scholar | DOI
[57] , Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics vol. 204 (Birkhäuser Boston, Inc., Boston, MA, 2002).Google Scholar | DOI
[58] and , ‘Algebraization of Frobenius splitting via quantum groups’, Ann. of Math. (2) 155(2) (2002), 491–551.Google Scholar | DOI
[59] and , ‘Richardson varieties and equivariant -theory’, J. Algebra 260(1) (2003), 230–260.Google Scholar | DOI
[60] , , and , ‘A conjectural Peterson isomorphism in -theory’, J. Algebra 513 (2018), 326–343.Google Scholar | DOI
[61] and , ‘Quantum cohomology of and homology of affine Grassmannian’, Acta Math. 204(1) (2010), 49–90.Google Scholar | DOI
[62] , , , and , ‘A uniform model for Kirillov-Reshetikhin crystals II. Alcove model, path model, and P=X’, Preprint, 2014, arXiv:1402.2203.Google Scholar | DOI
[63] , ‘Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras’, J. Amer. Math. Soc. 11(3) (1998), 551–567.Google Scholar | DOI
[64] , ‘Hecke algebras and Jantzen’s generic decomposition patterns’, Adv. Math. 37(2) (1980), 121–164.Google Scholar | DOI
[65] , ‘Canonical bases in tensor products’, Proc. Natl. Acad. Sci. USA 89(17) (1992), 8177–8179.Google ScholarPubMed | DOI
[66] , Introduction to Quantum Groups, Progress in Mathematics vol. 110 (Birkhäuser, Boston, 1994).Google Scholar
[67] , ‘Study of a -form of the coordinate ring of a reductive group’, J. Amer. Math. Soc. 22 (2009), 739–769.Google Scholar | DOI
[68] , ‘Some properties of weakly normal varieties’, Nagoya Math. J. 77 (1980), 61–74.Google Scholar | DOI
[69] , ‘Formules de caractères pour les algèbres de Kac-Moody générales’, Astérisque (1988), 1–267.Google Scholar
[70] and , ‘Geometric Langlands duality and representations of algebraic groups over commutative rings’, Ann. of Math. (2) 166(1) (2007), 95–143.Google Scholar | DOI
[71] , ‘Jet schemes of locally complete intersection canonical singularities’, ‘Invent. Math. 424 (2001), 397–424.Google Scholar | DOI
[72] and , ‘Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials’, Math. Z. 283 (2016), 937–978.Google Scholar | DOI
[73] , ‘Tensor products of Kirillov-Reshetikhin modules and fusion products’, Int. Math. Res.Not. IMRN 2017(18) (2017), 5667–5709.Google Scholar
[74] , ‘Quantum cohomology of ’, lecture at MIT (1997).Google Scholar
[75] , ‘Equations defining Schubert varieties and Frobenius splitting of diagonals’, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 61–90.Google Scholar | DOI
[76] , ‘Intersections of double cosets in algebraic groups’, Indag.Math. (N.S.) 3 (1992), 69–77.Google Scholar | DOI
[77] The Stacks project authors, The Stacks Project (2018). URL: https://stacks.math.columbia.edu.Google Scholar
[78] , Quasi-Projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) vol. 30 (Springer-Verlag, Berlin, 1995).Google Scholar | DOI
[79] , ‘On D. Peterson’s comparison formula for Gromov-Witten invariants of ’, Proc. Amer. Math. Soc. 133(6) (2005), 1601–1609.Google Scholar | DOI
[80] , ‘Some results on weakly normal ring extension’, J. Math. Soc. Japan 35(4) (1983), 649–661.Google Scholar | DOI
[81] , ‘An introduction to affine Grassmannians and the geometric Satake equivalence’, in Geometry of Moduli Spaces and Representation Theory (American Mathematical Societ, Providence, RI, 2017), 59–154.Google Scholar | DOI
Cité par Sources :
