Frobenius splitting of Schubert varieties of semi-infinite flag manifolds
Forum of Mathematics, Pi, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We exhibit basic algebro-geometric results on the formal model of semi-infinite flag varieties and its Schubert varieties over an algebraically closed field ${\mathbb K}$ of characteristic $\neq 2$ from scratch. We show that the formal model of a semi-infinite flag variety admits a unique nice (ind-)scheme structure, its projective coordinate ring has a $\mathbb {Z}$-model and it admits a Frobenius splitting compatible with the boundaries and opposite cells in positive characteristic. This establishes the normality of the Schubert varieties of the quasi-map space with a fixed degree (instead of their limits proved in [K, Math. Ann. 371 no.2 (2018)]) when $\mathsf {char}\, {\mathbb K} =0$ or $\gg 0$, and the higher-cohomology vanishing of their nef line bundles in arbitrary characteristic $\neq 2$. Some particular cases of these results play crucial roles in our proof [47] of a conjecture by Lam, Li, Mihalcea and Shimozono [60] that describes an isomorphism between affine and quantum K-groups of a flag manifold.
@article{10_1017_fmp_2021_5,
     author = {Syu Kato},
     title = {Frobenius splitting of {Schubert} varieties of semi-infinite flag manifolds},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.5/}
}
TY  - JOUR
AU  - Syu Kato
TI  - Frobenius splitting of Schubert varieties of semi-infinite flag manifolds
JO  - Forum of Mathematics, Pi
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.5/
DO  - 10.1017/fmp.2021.5
LA  - en
ID  - 10_1017_fmp_2021_5
ER  - 
%0 Journal Article
%A Syu Kato
%T Frobenius splitting of Schubert varieties of semi-infinite flag manifolds
%J Forum of Mathematics, Pi
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.5/
%R 10.1017/fmp.2021.5
%G en
%F 10_1017_fmp_2021_5
Syu Kato. Frobenius splitting of Schubert varieties of semi-infinite flag manifolds. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.5

[1] Andersen, H. H., Polo, P. and Wen, K., ‘Representations of quantum algebras’, Invent. Math. 104 (1991), 1–59.Google Scholar | DOI

[2] Arkhipov, S., Bezrukavnikov, R., Braverman, A., Gaitsgory, D. and Mirković, I., ‘Modules over the small quantum group and semi-infinite flag manifold’, Transform. Groups 10(3–4) (2005), 279–362.Google Scholar | DOI

[3] Beauville, A. and Laszlo, Y., ‘Conformal blocks and generalized theta functions’, Comm. Math. Phys. 164(2) (1994), 385–419.Google Scholar | DOI

[4] Beck, J., Chari, V. and Pressley, A., ‘An algebraic characterization of the affine canonical basis’, Duke Math. J. 99(3) (1999), 455–487.Google Scholar | DOI

[5] Beck, J. and Nakajima, H., ‘Crystal bases and two-sided cells of quantum affine algebras’, Duke Math. J. 123(2) (2004), 335–402.Google Scholar | DOI

[6] Behrend, K. A. and Manin, Y. I., ‘Stacks of stable maps and Gromov-Witten invariants’, Duke Math. J. 85(1) (1996), 1–60.Google Scholar | DOI

[7] Braverman, A., ‘Spaces of quasi-maps into the flag varieties and their applications’, in International Congress of Mathematicians, Vol. II (European Mathematical Society, Zürich, 2006), 1145–1170.Google Scholar

[8] Braverman, A., Feigin, B., Finkelberg, M. and Rybnikov, L., ‘A finite analog of the AGT relation I: Finite -algebras and quasimaps’ spaces’, Comm. Math. Phys. 308(2) (2011), :457–478.Google Scholar | DOI

[9] Braverman, A. and Finkelberg, M., ‘Semi-infinite Schubert varieties and quantum -theory of flag manifolds’, J. Amer. Math. Soc. 27(4) (2014), 1147–1168.Google Scholar | DOI

[10] Braverman, A. and Finkelberg, M., ‘Weyl modules and -Whittaker functions’, Math. Ann. 359(1-2) (2014), 45–59.Google Scholar | DOI

[11] Braverman, A. and Finkelberg, M., ‘Twisted zastava and -Whittaker functions’, J. London Math. Soc. (2) 96(2) (2017), 309–325.Google Scholar | DOI

[12] Braverman, A., Finkelberg, M., Gaitsgory, D. and Mirković, I., ‘Intersection cohomology of Drinfeld’s compactifications’, Selecta Math. (N.S.) 8(3) (2002), 381–418.Google Scholar | DOI

[13] Braverman, A. and Gaitsgory, D., ‘Geometric Eisenstein series’, Invent. Math. 150(2) (2002), 287–384.Google Scholar | DOI

[14] Brion, M. and Kumar, S., Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics vol. 231 (Birkhäuser Boston, Inc., Boston, MA, 2005).Google Scholar | DOI

[15] Brion, M. and Lakshmibai, V., ‘A geometric approach to standard monomial theory’, Represent. Theory 7 (2003), 651–680.Google Scholar | DOI

[16] Buch, A. S., Chaput, P.-E., Mihalcea, L. C. and Perrin, N., ‘Finiteness of cominuscule quantum -theory’, Ann. Sci. Éc. Norm. Supér. (4) 46(3) (2013), 477–494.Google Scholar | DOI

[17] Chari, V., Fourier, G. and Khandai, T., ‘A categorical approach to Weyl modules’, Transform. Groups 15 (2010), 517–549.Google Scholar | DOI

[18] Chari, V. and Ion, B., ‘BGG reciprocity for current algebras’, Compos. Math. 151(7) (2015), 1265–1287.Google Scholar | DOI

[19] Chari, V. and Pressley, A., ‘Weyl modules for classical and quantum affine algebras’, Represent. Theory 5 (2001), 191–223.Google Scholar | DOI

[20] Cherednik, I. and Kato, S., ‘Nonsymmetric Rogers-Ramanujan sums and thick Demazure modules’, Adv. Math. (2020), 107335.Google Scholar | DOI

[21] Chriss, N. and Ginzburg, V., Representation Theory and Complex Geometry, Modern Birkhäuser Classics (Birkhäuser Boston, Inc., Boston, MA, 2010). Reprint of the 1997 edition.Google Scholar

[22] Faltings, G., ‘Algebraic loop groups and moduli spaces of bundles’, J. Eur. Math. Soc. (JEMS) 5(1) (2003), 41–68.Google Scholar | DOI

[23] Feigin, B., Finkelberg, M., Kuznetsov, A. and Mirković, I., ‘Semi-infinite flags. II. Local and global intersection cohomology of quasimaps’ spaces’, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Translations Series 2 vol. 194 of Amer. Math. Soc. Transl. Ser. 2 (American Mathematical Society, Providence, RI, 1999), 113–148.Google Scholar

[24] Feigin, B. and Frenkel, E., ‘Affine Kac-Moody algebras and semi-infinite flag manifold’, Comm. Math. Phys. 128 (1990), 161–189.Google Scholar

[25] Feigin, E., Kato, S. and Makedonskyi, I., ‘Representation theoretic realization of non-symmetric Macdonald polynomials at infinity’, J. Reine Angew. Math. 764 (2020), 181–216.Google Scholar | DOI

[26] Feigin, E. and Makedonskyi, I., ‘Vertex algebras and coordinate rings of semi-infinite flags’, Comm. Math. Phys. 369(1) (2019), 221–244.Google Scholar | DOI

[27] Feigin, E. and Makedonskyi, I., ‘Semi-infinite Plücker relations and Weyl modules’, Int. Math. Res. Not. IMRN (14) (2020), 4357–4394.Google Scholar | DOI

[28] Feigin, E., Makedonskyi, I. and Orr, D., ‘Generalized Weyl modules and nonsymmetric -Whittaker functions’, Adv. Math. 339 (2018), 997–1033.Google Scholar | DOI

[29] Finkelberg, M. and Mirković, I., ‘Semi-infinite flags. I. Case of global curve ’, in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, American Mathematical Society Translations Series 2 vol. 194 (American Mathematical Society, Providence, RI, 1999), 81–112.Google Scholar

[30] Fulton, W. and Pandharipande, R., ‘Notes on stable maps and quantum cohomology’, in Algebraic Geometry: Santa Cruz 1995 (American Mathematical Society, Providence, RI, 1995), Proc. Sympos. Pure Math., 62, Part 2, 45–96.Google Scholar

[31] Garland, H., ‘The arithmetic theory of loop algebras’, J. Algebra 53 (1978), 480–551.Google Scholar | DOI

[32] Givental, A., ‘Homological geometry and mirror symmetry’, in Proceedings of the International Congress of Mathematicians 1994 (Birkhäuser, Basel, 1995), 472–480.Google Scholar | DOI

[33] Givental, A. and Lee, Y.-P., ‘Quantum -theory on flag manifolds, finite-difference Toda lattices and quantum groups’, Invent. Math. 151(1) (2003), 193–219.Google Scholar | DOI

[34] Givental, A. B., ‘Equivariant Gromov-Witten invariants’, Int. Math. Res. Not. IMRN 13 (1996), 613–663.Google Scholar | DOI

[35] Grojnowski, I. and Lusztig, G., ‘A comparison of bases of quantized enveloping algebras’, in Linear Algebraic Groups and Their Representations (Los Angeles, CA, 1992), Contemporary Mathematics vol. 153 (American Mathematical Society, Providence, RI, 1993), 11–19.Google Scholar

[36] Grothendieck, A., ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III’, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5–255.Google Scholar | DOI

[37] Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics vol. 52 (Springer-Verlag, New York, 1977).Google Scholar | DOI

[38] Iwahori, N. and Matsumoto, H., ‘On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups’, Publ. Math. Inst. Hautes Études Sci. 25 (1965), 5–48.Google Scholar | DOI

[39] Joseph, A., ‘On the Demazure character formula’, Ann. Sci. Éc. Norm. Supér. (4) 18(3) (1985), 389–419.Google Scholar | DOI

[40] Kac, V. G., Infinite-Dimensional Lie Algebras, third edn (Cambridge University Press, Cambridge, UK, 1990).Google Scholar | DOI

[41] Kashiwara, M., ‘On crystal bases of the q-analogue of universal enveloping algebras’, Duke Math. J. 63(2) (1991), 465–516.Google Scholar | DOI

[42] Kashiwara, M., ‘The crystal base and Littelmann’s refined Demazure character formula’, Duke Math. J. 71(3) (1993), 839–858.Google Scholar | DOI

[43] Kashiwara, M., ‘Crystal bases of modified quantized enveloping algebra’, Duke Math. J. 73(2) (1994), 383–413.Google Scholar | DOI

[44] Kashiwara, M., ‘On level-zero representations of quantized affine algebras’, Duke Math. J. 112(1) (2002), 117–175.Google Scholar | DOI

[45] Kashiwara, M., ‘Level zero fundamental representations over quantized affine algebras and Demazure modules’, Publ. Res. Inst. Math. Sci. 41(1) (2005), 223–250.Google Scholar | DOI

[46] Kato, S., ‘Demazure character formula for semi-infinite flag varieties’, Math. Ann. 371(3) (2018), 1769–1801.Google Scholar | DOI

[47] Kato, S., ‘Loop structure on equivariant -theory of semi-infinite flag manifolds’, Preprint, 2018, arXiv:1805.01718v6.Google Scholar

[48] Kato, S., ‘On quantum -groups of partial flag manifolds’, Preprint, 2019, arXiv:1906.09343.Google Scholar

[49] Kato, S., ‘Frobenius splitting of thick flag manifolds of Kac-Moody algebras’, Int. Math. Res. Not. IMRN 2020(17) (2020), 5401–5427.Google Scholar | DOI

[50] Kato, S. and Loktev, S., ‘A Weyl module stratification of integrable representations’, Comm. Math. Phys. 368 (2019), 113–141.Google Scholar | DOI

[51] Kato, S., Naito, S. and Sagaki, D., ‘Equivariant -theory of semi-infinite flag manifolds and the Pieri-Chevalley formula’, Duke Math. J. 169(13) (2020), 2421–2500.Google Scholar | DOI

[52] Kempf, G. R., ‘Linear systems on homogeneous spaces’, Ann. of Math. (2) 103(3) (1976), 557–591.Google Scholar | DOI

[53] Kim, B. and Pandharipande, R., ‘The connectedness of the moduli space of maps to homogeneous spaces’, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000) (World Scientific Publishing, River Edge, NJ, 2001), 187–201.Google Scholar | DOI

[54] Kleiman, S. L., ‘The transversality of a general translate’, Compos. Math. 28(3) (1974), 287–297.Google Scholar

[55] Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics vol. 134 (Cambridge University Press, Cambridge, UK, 1998). With the collaboration of Clemens, C. H. and Corti, A., translated from the 1998 Japanese original.Google Scholar | DOI

[56] Kontsevich, M. and Manin, Y., ‘Gromov-Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys. 164(3) (1994), 525–562.Google Scholar | DOI

[57] Kumar, S., Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics vol. 204 (Birkhäuser Boston, Inc., Boston, MA, 2002).Google Scholar | DOI

[58] Kumar, S. and Littelmann, P., ‘Algebraization of Frobenius splitting via quantum groups’, Ann. of Math. (2) 155(2) (2002), 491–551.Google Scholar | DOI

[59] Lakshmibai, V. and Littelmann, P., ‘Richardson varieties and equivariant -theory’, J. Algebra 260(1) (2003), 230–260.Google Scholar | DOI

[60] Lam, T., Li, C., Mihalcea, L. C. and Shimozono, M., ‘A conjectural Peterson isomorphism in -theory’, J. Algebra 513 (2018), 326–343.Google Scholar | DOI

[61] Lam, T. and Shimozono, M., ‘Quantum cohomology of and homology of affine Grassmannian’, Acta Math. 204(1) (2010), 49–90.Google Scholar | DOI

[62] Lenart, C., Naito, S., Sagaki, D., Schilling, A. and Shimozono, M., ‘A uniform model for Kirillov-Reshetikhin crystals II. Alcove model, path model, and P=X’, Preprint, 2014, arXiv:1402.2203.Google Scholar | DOI

[63] Littelmann, P., ‘Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras’, J. Amer. Math. Soc. 11(3) (1998), 551–567.Google Scholar | DOI

[64] Lusztig, G., ‘Hecke algebras and Jantzen’s generic decomposition patterns’, Adv. Math. 37(2) (1980), 121–164.Google Scholar | DOI

[65] Lusztig, G., ‘Canonical bases in tensor products’, Proc. Natl. Acad. Sci. USA 89(17) (1992), 8177–8179.Google ScholarPubMed | DOI

[66] Lusztig, G., Introduction to Quantum Groups, Progress in Mathematics vol. 110 (Birkhäuser, Boston, 1994).Google Scholar

[67] Lusztig, G., ‘Study of a -form of the coordinate ring of a reductive group’, J. Amer. Math. Soc. 22 (2009), 739–769.Google Scholar | DOI

[68] Manaresi, M., ‘Some properties of weakly normal varieties’, Nagoya Math. J. 77 (1980), 61–74.Google Scholar | DOI

[69] Mathieu, O., ‘Formules de caractères pour les algèbres de Kac-Moody générales’, Astérisque (1988), 1–267.Google Scholar

[70] Mirković, I. and Vilonen, K., ‘Geometric Langlands duality and representations of algebraic groups over commutative rings’, Ann. of Math. (2) 166(1) (2007), 95–143.Google Scholar | DOI

[71] Mustata, M., ‘Jet schemes of locally complete intersection canonical singularities’, ‘Invent. Math. 424 (2001), 397–424.Google Scholar | DOI

[72] Naito, S. and Sagaki, D., ‘Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials’, Math. Z. 283 (2016), 937–978.Google Scholar | DOI

[73] Naoi, K., ‘Tensor products of Kirillov-Reshetikhin modules and fusion products’, Int. Math. Res.Not. IMRN 2017(18) (2017), 5667–5709.Google Scholar

[74] Peterson, D., ‘Quantum cohomology of ’, lecture at MIT (1997).Google Scholar

[75] Ramanathan, A., ‘Equations defining Schubert varieties and Frobenius splitting of diagonals’, Publ. Math. Inst. Hautes Études Sci. 65 (1987), 61–90.Google Scholar | DOI

[76] Richardson, R. W., ‘Intersections of double cosets in algebraic groups’, Indag.Math. (N.S.) 3 (1992), 69–77.Google Scholar | DOI

[77] The Stacks project authors, The Stacks Project (2018). URL: https://stacks.math.columbia.edu.Google Scholar

[78] Viehweg, E., Quasi-Projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) vol. 30 (Springer-Verlag, Berlin, 1995).Google Scholar | DOI

[79] Woodward, C. T., ‘On D. Peterson’s comparison formula for Gromov-Witten invariants of ’, Proc. Amer. Math. Soc. 133(6) (2005), 1601–1609.Google Scholar | DOI

[80] Yanagihara, H., ‘Some results on weakly normal ring extension’, J. Math. Soc. Japan 35(4) (1983), 649–661.Google Scholar | DOI

[81] Zhu, X., ‘An introduction to affine Grassmannians and the geometric Satake equivalence’, in Geometry of Moduli Spaces and Representation Theory (American Mathematical Societ, Providence, RI, 2017), 59–154.Google Scholar | DOI

Cité par Sources :