Holomorphic anomaly equation for $({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\mathbb P}^2$
Forum of Mathematics, Pi, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambda _g$-insertion is related to Gromov-Witten theory of the total space of ${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D.Specializing to $(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold ${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E.Specializing further to $S={\mathbb P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local ${\mathbb P}^2$ and the elliptic curve.Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on ${\mathbb P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local ${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.
@article{10_1017_fmp_2021_3,
     author = {Pierrick Bousseau and Honglu Fan and Shuai Guo and Longting Wu},
     title = {Holomorphic anomaly equation for $({\mathbb P}^2,E)$ and the {Nekrasov-Shatashvili} limit of local ${\mathbb P}^2$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.3/}
}
TY  - JOUR
AU  - Pierrick Bousseau
AU  - Honglu Fan
AU  - Shuai Guo
AU  - Longting Wu
TI  - Holomorphic anomaly equation for $({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\mathbb P}^2$
JO  - Forum of Mathematics, Pi
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.3/
DO  - 10.1017/fmp.2021.3
LA  - en
ID  - 10_1017_fmp_2021_3
ER  - 
%0 Journal Article
%A Pierrick Bousseau
%A Honglu Fan
%A Shuai Guo
%A Longting Wu
%T Holomorphic anomaly equation for $({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\mathbb P}^2$
%J Forum of Mathematics, Pi
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.3/
%R 10.1017/fmp.2021.3
%G en
%F 10_1017_fmp_2021_3
Pierrick Bousseau; Honglu Fan; Shuai Guo; Longting Wu. Holomorphic anomaly equation for $({\mathbb P}^2,E)$ and the Nekrasov-Shatashvili limit of local ${\mathbb P}^2$. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.3

[1] Abramovich, D., Marcus, S., and Wise, J., ‘Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations’, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1611–1667.Google Scholar | DOI

[2] Aganagic, M., Bouchard, V., and Klemm, A., ‘Topological strings and (almost) modular forms’, Comm. Math. Phys. 277 (2008), no. 3, 771–819.Google Scholar | DOI

[3] Alim, M., Länge, J. D., and Mayr, P., ‘Global properties of topological string amplitudes and orbifold invariants’, J. High Energy Phys. 3 (2010), 113, 30.Google Scholar

[4] Alim, M., Scheidegger, E., Yau, S.-T., and Zhou, J., ‘Special polynomial rings, quasi modular forms and duality of topological strings’, Adv. Theor. Math. Phys. 18 (2014), no. 2, 401–467.Google Scholar | DOI

[5] Bershadsky, M., Cecotti, S., Ooguri, H., and Vafa, C., ‘Holomorphic anomalies in topological field theories’, Nuclear Phys. B 405 (1993), no. 2-3, 279–304.Google Scholar | DOI

[6] Bershadsky, M., Cecotti, S., Ooguri, H., and Vafa, C., ‘Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes’, Comm. Math. Phys. 165 (1994), no. 2, 311–427.Google Scholar | DOI

[7] Bloch, S. and Okounkov, A., ‘The character of the infinite wedge representation’, Adv. Math. 149 (2000), no. 1, 1–60.Google Scholar | DOI

[8] Bousseau, P., A proof of N. Takahashi’s conjecture for and a refined sheaves/Gromov–Witten correspondence, Preprint, 2019, arXiv:1909.02992.Google Scholar

[9] Bousseau, P., Scattering diagrams, stability conditions and coherent sheaves on , Preprint, 2019, arXiv:1909.02985.Google Scholar

[10] Bousseau, P., ‘Tropical refined curve counting from higher genera and lambda classes’., Invent. Math. 215 (2019), no. 1, 1–79.Google Scholar | DOI

[11] Bousseau, P., ‘The quantum tropical vertex’, Geom. Topol. 24 (2020), no. 3, 1297–1379.Google Scholar | DOI

[12] Cao, Y., Maulik, D., and Toda, Y., ‘Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds’, Adv. Math. 338 (2018), 41–92.Google Scholar | DOI

[13] Chang, H.-L., Guo, S., and Li, J., BCOV’s Feynman rule of quintic 3-folds, Preprint, 2018, arXiv:1810.00394.Google Scholar

[14] Chiang, T.-M., Klemm, A., Yau, S.-T., and Zaslow, E., ‘Local mirror symmetry: calculations and interpretations’, Adv. Theor. Math. Phys. 3 (1999), no. 3, 495–565.Google Scholar | DOI

[15] Choi, J., Katz, S., and Klemm, A., ‘The refined BPS index from stable pair invariants’, Comm. Math. Phys. 328 (2014), no. 3, 903–954.Google Scholar | DOI

[16] Coates, T. and Givental, A., ‘Quantum Riemann–Roch, Lefschetz and Serre’, Ann. of Math. 165 (2007), no. 1, 15–53.Google Scholar | DOI

[17] Coates, T. and Iritani, H., Gromov-Witten Invariants of Local and Modular Forms, Preprint, 2018, arXiv:1804.03292Google Scholar

[18] Diamond, F. and Shurman, J., A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005.Google Scholar

[19] Dijkgraaf, R., Mirror symmetry and elliptic curves, in The moduli space of curves (Texel Island, 1994), 1995, pp. 149–163.Google Scholar | DOI

[20] Eliashberg, Y., Givental, A., and Hofer, H., Introduction to symplectic field theory, Geom. Funct. Anal. (2000), 560–673. GAFA 2000 (Tel Aviv, 1999).Google Scholar | DOI

[21] Eynard, B., Marino, M., and Orantin, N., ‘Holomorphic anomaly and matrix models’, J. High Energy Phys. 58 (2007).Google Scholar

[22] Eynard, B. and Orantin, N., Computation of open Gromov-Witten invariants for toric Calabi-Yau 3-folds by topological recursion, a proof of the BKMP conjecture, Comm. Math. Phys. 337 (2015), no. 2, 483–567.Google Scholar | DOI

[23] Faber, C. and Pandharipande, R., ‘Hodge integrals and Gromov–Witten theory’, Invent. Math. 139 (2000), no. 1, 173–199.Google Scholar | DOI

[24] Faber, C. and Pandharipande, R., ‘Logarithmic series and Hodge integrals in the tautological ring’, 2000, pp. 215–252. With an appendix by Zagier, Don, Dedicated to William Fulton on the occasion of his 60th birthday.Google Scholar | DOI

[25] Fan, H., Wu, L., and You, F., ‘Higher genus relative Gromov–Witten theory and double ramification cycles’, Journal of the London Mathematical Society, available at https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms.12417.Google Scholar

[26] Fan, H., Wu, L., and You, F., ‘Structures in genus-zero relative Gromov–Witten theory’, J. Topol. 13 (2020), no. 1, 269–307.Google Scholar | DOI

[27] Fang, B., Liu, M.C.-C., and Zong, Z., On the remodelling conjecture for toric CalabiYau 3-orbifolds, Preprint, 2016, arXiv:1604.07123.Google Scholar

[28] Fang, B., Ruan, Y., Zhang, Y., and Zhou, J., Open Gromov-Witten theory of , , , and Jacobi forms, Comm. Math. Phys. 369 (2019), no. 2, 675–719.Google Scholar | DOI

[29] Van Garrel, M., Graber, T., and Ruddat, H., ‘Local Gromov-Witten invariants are log invariants’, Adv. Math. 350 (2019), 860–876.Google Scholar | DOI

[30] Givental, A., ‘Equivariant Gromov-Witten invariants’, Internat. Math. Res. Notices 13 (1996), 613–663.Google Scholar | DOI

[31] Givental, A., ‘Gromov–Witten invariants and quantization of quadratic hamiltonians’, Moscow Mathematical Journal 1 (2001), no. 5, 551–568.Google Scholar | DOI

[32] Graber, T. and Pandharipande, R., ‘Localization of virtual classes’, Invent. Math. 135 (1999), no. 2, 487–518.Google Scholar | DOI

[33] Graber, T. and Vakil, R., ‘Relative virtual localization and vanishing of tautological classes on moduli spaces of curves’, Duke Math. J. 130 (2005), 1–37.Google Scholar | DOI

[34] Graefnitz, T., Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs, Preprint, 2020, arXiv:2005.14018.Google Scholar

[35] Guo, S., Janda, F., and Ruan, Y., Structure of higher genus Gromov-Witten invariants of quintic 3-folds, Preprint, 2018, arXiv:1812.11908.Google Scholar

[36] Haghighat, B., Klemm, A., and Rauch, M., ‘Integrability of the holomorphic anomaly equations’, J. High Energy Phys. 10 (2008), 097, 37.Google Scholar

[37] Hu, X., ‘Localized standard versus reduced formula and genus 1 local Gromov-Witten invariants’, Int. Math. Res. Not. IMRN 20 (2015), 9921–9990.Google Scholar | DOI

[38] Huang, M.-X., Kashani-Poor, A.-K., and Klemm, A., The -deformed B-model for rigid theories, Ann. Henri Poincaré 14 (2013), no. 2, 425–497.Google Scholar | DOI

[39] Huang, M.-X. and Klemm, A., ‘Holomorphic anomaly in gauge theories and matrix models’, J. High Energy Phys. 9 (2007), 054, 33.Google Scholar

[40] Huang, M.-X. and Klemm, A., ‘Direct integration for general backgrounds’, Adv. Theor. Math. Phys. 16 (2012), no. 3, 805–849.Google Scholar | DOI

[41] Huang, M.-X., Klemm, A., and Quackenbush, S., Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Homological mirror symmetry, 2009, pp. 45–102.Google Scholar

[42] Ionel, E.-N. and Parker, T.-H., ‘Relative Gromov-Witten invariants’, Ann. of Math. (2) 157 (2003), no. 1, 45–96.Google Scholar | DOI

[43] Joyce, D. and Song, Y., ‘A theory of generalized Donaldson-Thomas invariants’, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199.Google Scholar

[44] Katz, E., Line-bundles on stacks of relative maps, Preprint, 2005, arXiv:0507322.Google Scholar

[45] Katz, S., ‘Genus zero Gopakumar-Vafa invariants of contractible curves’, J. Differential Geom. 79 (2008), no. 2, 185–195.Google Scholar | DOI

[46] Kim, B., Lho, H., and Ruddat, H., The degeneration formula for stable log maps, Preprint, 2018, arXiv:1803.04210.Google Scholar

[47] Klemm, A. and Zaslow, E., ‘Local mirror symmetry at higher genus’, in Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 2001, pp. 183–207.Google Scholar | DOI

[48] Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, Preprint, 2008, arXiv:0811.2435.Google Scholar

[49] Krefl, D. and Walcher, J., ‘Extended holomorphic anomaly in gauge theory’, Lett. Math. Phys. 95 (2011), no. 1, 67–88.Google Scholar | DOI

[50] Lho, H., Gromov-Witten invariants of Calabi-Yau manifolds with two Kähler parameters, Preprint, 2018, arXiv:1804.04399.Google Scholar | DOI

[51] Lho, H. and Pandharipande, R., ‘Stable quotients and the holomorphic anomaly equation’, Adv. Math. 332 (2018), 349–402.Google Scholar | DOI

[52] Lho, H. and Pandharipande, R., Crepant resolution and the holomorphic anomaly equation for , Proc. Lond. Math. Soc. (3) 119 (2019), no. 3, 781–813.Google Scholar | DOI

[53] Lho, H. and Pandharipande, R., ‘Holomorphic anomaly equations for the formal quintic’, Peking Mathematical Journal 2 (2019), no. 1, 1–40.Google Scholar | DOI

[54] Li, A.-M. and Ruan, Y., ‘Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds’, Invent. Math. 145 (2001), no. 1, 151–218.Google Scholar | DOI

[55] Li, J., ‘Stable morphisms to singular schemes and relative stable morphisms’, J. Differential Geom. 57 (2001), no. 509–578.Google Scholar | DOI

[56] Li, J., ‘A Degeneration formula of GW-invariants’, J. Differential Geom. 60 (2002), 199–293.Google Scholar | DOI

[57] Lian, B.H., Liu, K., and Yau, S.-T., ‘Mirror principle. I’, Asian J. Math. 1 (1997), no. 4, 729–763.Google Scholar | DOI

[58] Maier, R.S., ‘On rationally parametrized modular equations’, J. Ramanujan Math. Soc. 24 (2009), no. 1, 1–73.Google Scholar

[59] Maier, R.S., ‘Nonlinear differential equations satisfied by certain classical modular forms’, Manuscripta Math. 134 (2011), no. 1–2, 1–42.Google Scholar | DOI

[60] Maulik, Nekrasov, Okounkov, and Pandharipande, ‘Gromov–Witten theory and Donaldson–Thomas theory, I’, Compos. Math. 142 (2006), no. 5, 1263–1285.Google Scholar | DOI

[61] Maulik, D. and Shen, J., Cohomological -independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Preprint, 2020, arXiv:2012.06627.Google Scholar

[62] Milanov, T., Ruan, Y., and Shen, Y., ‘Gromov-Witten theory and cycle-valued modular forms’, J. Reine Angew. Math. 735 (2018), 287–315.Google Scholar | DOI

[63] Mumford, D., ‘Towards an enumerative geometry of the moduli space of curves’, Arithmetic and geometry, Vol. II, 1983, pp. 271–328.Google Scholar | DOI

[64] Nekrasov, N. and Okounkov, A., ‘Membranes and sheaves’, Algebr. Geom. 3 (2016), no. 3, 320–369.Google Scholar | DOI

[65] Oberdieck, G. and Pixton, A., ‘Holomorphic anomaly equations and the Igusa cusp form conjecture’, Invent. Math. 213 (2018), no. 2, 507–587.Google Scholar | DOI

[66] Oberdieck, G. and Pixton, A., ‘Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations’, Geom. Topol. 23 (2019), no. 3, 1415–1489.Google Scholar | DOI

[67] Okounkov, A. and Pandharipande, R., ‘Gromov–Witten theory, Hurwitz theory, and completed cycles’, Ann. of Math. 163 (2006), 517–560.Google Scholar | DOI

[68] Okounkov, A. and Pandharipande, R., ‘Virasoro constraints for target curves’, Invent. Math. 163 (2006), 47–108.Google Scholar | DOI

[69] Pandharipande, R., Pixton, A., and Zvonkine, D., Relations on via -spin structures, J. Amer. Math. Soc. 28 (2015), no. 1, 279–309.Google Scholar | DOI

[70] Pandharipande, R. and Thomas, R.P., ‘Curve counting via stable pairs in the derived category’, Invent. Math. 178 (2009), no. 2, 407–447.Google Scholar | DOI

[71] Wang, X., Finite generation and holomorphic anomaly equation for equivariant Gromov-Witten invariants of , Preprint, 2019, arXiv:1908.03691.Google Scholar

[72] Wang, X., Quasi-modularity and Holomorphic Anomaly Equation for the Twisted Gromov-Witten Theory: over , Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 12, 1945–1962.Google Scholar | DOI

[73] Wu, L., ‘A remark on Gromov-Witten invariants of quintic threefold’, Adv. Math. 326 (2018), 241–313.Google Scholar | DOI

[74] Zagier, D., Elliptic modular forms and their applications, in The 1-2-3 of modular forms, 2008, pp. 1–103.Google Scholar | DOI

[75] Zagier, D. and Zinger, A., Some properties of hypergeometric series associated with mirror symmetry, in Modular forms and string duality, 2008, pp. 163–177.Google Scholar | DOI

[76] Zhou, J., Arithmetic Properties of Moduli Spaces and Topological String Partition Functions of Some Calabi-Yau Threefolds (2014). Ph.D. thesis, Harvard University, available at https://dash.harvard.edu/handle/1/12274581.Google Scholar

Cité par Sources :