Embedding codimension of the space of arcs
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties and study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension as a measure of singularities, our main result can be interpreted as saying that the singularities of the arc space are maximal at the arcs that are fully embedded in the singular locus of the underlying scheme, and progressively improve as we move away from said locus. As an application, we complement a theorem of Drinfeld, Grinberg and Kazhdan on formal neighbourhoods in arc spaces by providing a converse to their theorem, an optimal bound for the embedding codimension of the formal model appearing in the statement, a precise formula for the embedding dimension of the model constructed in Drinfeld’s proof and a geometric meaningful way of realising the decomposition stated in the theorem.
@article{10_1017_fmp_2021_19,
     author = {Christopher Chiu and Tommaso de Fernex and Roi Docampo},
     title = {Embedding codimension of the space of arcs},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2021.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.19/}
}
TY  - JOUR
AU  - Christopher Chiu
AU  - Tommaso de Fernex
AU  - Roi Docampo
TI  - Embedding codimension of the space of arcs
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.19/
DO  - 10.1017/fmp.2021.19
LA  - en
ID  - 10_1017_fmp_2021_19
ER  - 
%0 Journal Article
%A Christopher Chiu
%A Tommaso de Fernex
%A Roi Docampo
%T Embedding codimension of the space of arcs
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.19/
%R 10.1017/fmp.2021.19
%G en
%F 10_1017_fmp_2021_19
Christopher Chiu; Tommaso de Fernex; Roi Docampo. Embedding codimension of the space of arcs. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2021.19

[1] Artin, M., ‘Algebraic approximation of structures over complete local rings’, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 23–58.Google Scholar | DOI

[2] Asgharzadeh, M. and Tousi, M., ‘On the notion of Cohen-Macaulayness for non-Noetherian rings’, J. Algebra 322(7) (2009), 2297–2320. doi:10.1016/j.jalgebra.2009.06.017.Google Scholar | DOI

[3] Atiyah, M. F. and Macdonald, I. G., Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969).Google Scholar

[4] Becker, T., ‘Stability and Buchberger criterion for standard bases in power series rings’, J. Pure Appl. Algebra 66(3) (1990), 219–227. doi:10.1016/0022-4049(90)90028-G.Google Scholar | DOI

[5] Bhatt, B., ‘Algebraization and Tannaka duality’, Camb. J. Math. 4(4) (2016), 403–461. doi:10.4310/CJM.2016.v4.n4.a1.Google Scholar | DOI

[6] Bochnak, J. and Kucharz, W., ‘Local algebraicity of analytic sets’, J. Reine Angew. Math. 352 (1984), 1–14. doi:10.1515/crll.1984.352.1.Google Scholar

[7] Bourbaki, N., Elements of Mathematics: Commutative Algebra (Hermann, Paris, 1972). Translated from the French.Google Scholar

[8] Bourbaki, N., Elements of Mathematics. Algebra, Part I: Chapters 1-3 (Hermann, Paris, 1974). Translated from the French.Google Scholar

[9] Bourqui, D. and Sebag, J., ‘The Drinfeld-Grinberg-Kazhdan theorem is false for singular arcs’, J. Inst. Math. Jussieu 16(4) (2017), 879–885. doi:10.1017/S1474748015000341.Google Scholar | DOI

[10] Bourqui, D. and Sebag, J., ‘The Drinfeld-Grinberg-Kazhdan theorem for formal schemes and singularity theory’, Confluentes Math. 9(1) (2017), 29–64. doi:10.5802/cml.35.Google Scholar | DOI

[11] Bourqui, D. and Sebag, J., ‘Smooth arcs on algebraic varieties’, J. Singul. 16 (2017), 130–140.Google Scholar

[12] Bourqui, D. and Sebag, J., ‘Cancellation and regular derivations’, J. Algebra Appl. 18(09) (2019), 1–9.Google Scholar | DOI

[13] Bourqui, D. and Sebag, J., ‘Finite formal model of toric singularities’, J. Math. Soc. Japan 71(3) (2019), 805–829.Google Scholar | DOI

[14] Bouthier, A., ‘Cohomologie étale des espaces d’arcs’, Preprint, 2020, .Google Scholar | arXiv

[15] Bouthier, A. and Kazhdan, D., ‘Faisceaux pervers sur les espaces d’arcs’, Preprint, 2017, .Google Scholar | arXiv

[16] Bouthier, A., Ngô, B. C. and Sakellaridis, Y., ‘On the formal arc space of a reductive monoid’, Amer. J. Math. 138(1) (2016), 81–108. doi:10.1353/ajm.2016.0004.Google Scholar | DOI

[17] Bruns, W. and Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics vol. 39 (Cambridge University Press, Cambridge, 1993).Google Scholar

[18] Chiu, C., Local Geometry of the Space of Arcs, PhD dissertation, University of Vienna, 2020.Google Scholar

[19] Chiu, C. and Hauser, H., ‘On the formal neighborhood of degenerate arcs’, Preprint, 2016, URL: https://homepage.univie.ac.at/herwig.hauser.Google Scholar

[20] De Fernex, T. and Docampo, R., ‘Jacobian discrepancies and rational singularities’, J. Eur. Math. Soc. (JEMS) 16(1) (2014), 165–199. doi:10.4171/JEMS/430.Google Scholar | DOI

[21] De Fernex, T. and Docampo, R., ‘Differentials on the arc space’, Duke Math. J. 169(2) (2020), 353–396. doi:10.1215/00127094-2019-0043.Google Scholar | DOI

[22] De Fernex, T., Ein, L. and Ishii, S., ‘Divisorial valuations via arcs’, ‘Publ. Res. Inst. Math. Sci. 44(2) (2008), 425–448. doi:10.2977/prims/1210167333.Google Scholar | DOI

[23] Denef, J. and Loeser, F., ‘Germs of arcs on singular algebraic varieties and motivic integration’, Invent. Math. 135(1) (1999), 201–232. doi:10.1007/s002220050284.Google Scholar | DOI

[24] Drinfeld, V., ‘On the Grinberg–Kazhdan formal arc theorem’, Preprint, 2002, .Google Scholar | arXiv

[25] Drinfeld, V., ‘Grinberg–Kazhdan theorem and Newton groupoids’, Preprint, 2018, .Google Scholar | arXiv

[26] Ein, L. and Ishii, S., ‘Singularities with respect to Mather-Jacobian discrepancies’, in Commutative Algebra and Noncommutative Algebraic Geometry, Vol. II, Mathematical Science Research Institute Publications vol. 68 (Cambridge University Press, New York, 2015), 125–168.Google Scholar

[27] Ein, L. and Mustaţă, M., ‘Generically finite morphisms and formal neighborhoods of arcs’, Geom. Dedicata 139 (2009), 331–335. doi:10.1007/s10711-008-9320-7.Google Scholar | DOI

[28] Eisenbud, D., Commutative Algebra, Graduate Texts in Mathematics vol. 150 (Springer-Verlag, New York, 1995).Google Scholar | DOI

[29] Gilmer, R. and Heinzer, W., ‘Primary ideals with finitely generated radical in a commutative ring’, Manuscripta Math. 78(2) (1993), 201–221. doi:10.1007/BF02599309.Google Scholar | DOI

[30] Glaz, S., Commutative Coherent Rings, Lecture Notes in Mathematics vol. 1371 (Springer-Verlag, Berlin, 1989).Google Scholar | DOI

[31] Grinberg, M. and Kazhdan, D., ‘Versal deformations of formal arcs’, Geom. Funct. Anal. 10(3) (2000), 543–555. doi:10.1007/PL00001628.Google Scholar | DOI

[32] Grothendieck, A., ‘Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas. I’, Publ. Math. Inst. Hautes Études Sci. 20 (1964), 101–355.Google Scholar | DOI

[33] Hauser, H. and Woblistin, S., ‘Arquile varieties – Varieties consisting of power series in a single variable’, Forum Math. Sigma 9 (2021), e78. doi:10.1017/fms.2021.73.Google Scholar | DOI

[34] Ishii, S., ‘Mather discrepancy and the arc spaces’, Ann. Inst. Fourier (Grenoble) 63(1) (2013), 89–111. doi:10.5802/aif.2756.Google Scholar | DOI

[35] Lech, C., ‘Inequalities related to certain couples of local rings’, Acta Math. 112 (1964), 69–89. doi:10.1007/BF02391765.Google Scholar | DOI

[36] Matsumura, H., Commutative Ring Theory, second edn, Cambridge Studies in Advanced Mathematics vol. 8 (Cambridge University Press, Cambridge, 1989).Google Scholar

[37] Mourtada, H. and Reguera, A. J., ‘Mather discrepancy as an embedding dimension in the space of arcs’, Publ. Res. Inst. Math. Sci. 54(1) (2018), 105–139. doi:10.4171/PRIMS/54-1-4.Google Scholar | DOI

[38] Ngô, B. C., ‘Weierstrass preparation theorem and singularities in the space of non-degenerate arcs’, Preprint, 2017, .Google Scholar | arXiv

[39] Nicaise, J. and Sebag, J., ‘Greenberg approximation and the geometry of arc spaces’, Comm. Algebra 38(11) (2010), 4077–4096. doi:10.1080/00927870903295398.Google Scholar | DOI

[40] Reguera, A. J., ‘A curve selection lemma in spaces of arcs and the image of the Nash map’, Compos. Math. 142(1) (2006), 119–130. doi:10.1112/S0010437X05001582.Google Scholar | DOI

[41] Reguera, A. J., ‘Towards the singular locus of the space of arcs’, Amer. J. Math. 131(2) (2009), 313–350. doi:10.1353/ajm.0.0046.Google Scholar | DOI

[42] Reguera, A. J., ‘Coordinates at stable points of the space of arcs’, J. Algebra 494 (2018), 40–76. doi:10.1016/j.jalgebra.2017.09.031.Google Scholar | DOI

[43] Sebag, J., ‘Primitive arcs on curves’, Bull. Belg. Math. Soc. Simon Stevin 23(4) (2016), 481–486.Google Scholar | DOI

[44] The Stacks project authors, The Stacks Project (2022). URL: http://stacks.math.columbia.edu.Google Scholar

[45] Vojta, P., ‘Jets via Hasse-Schmidt derivations’, in Diophantine Geometry, CRM Series vol. 4 (Edizioni della Normale, Pisa, Italy, 2007), 335–361.Google Scholar

[46] Whitney, H., ‘Local properties of analytic varieties’, in Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) (Princeton University Press, Princeton, NJ, 1965), 205–244.Google Scholar | DOI

Cité par Sources :