Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2021_19,
     author = {Christopher Chiu and Tommaso de Fernex and Roi Docampo},
     title = {Embedding codimension of the space of arcs},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2021.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.19/}
}
                      
                      
                    TY - JOUR AU - Christopher Chiu AU - Tommaso de Fernex AU - Roi Docampo TI - Embedding codimension of the space of arcs JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.19/ DO - 10.1017/fmp.2021.19 LA - en ID - 10_1017_fmp_2021_19 ER -
Christopher Chiu; Tommaso de Fernex; Roi Docampo. Embedding codimension of the space of arcs. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2021.19
[1] , ‘Algebraic approximation of structures over complete local rings’, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 23–58.Google Scholar | DOI
[2] and , ‘On the notion of Cohen-Macaulayness for non-Noetherian rings’, J. Algebra 322(7) (2009), 2297–2320. doi:10.1016/j.jalgebra.2009.06.017.Google Scholar | DOI
[3] and , Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969).Google Scholar
[4] , ‘Stability and Buchberger criterion for standard bases in power series rings’, J. Pure Appl. Algebra 66(3) (1990), 219–227. doi:10.1016/0022-4049(90)90028-G.Google Scholar | DOI
[5] , ‘Algebraization and Tannaka duality’, Camb. J. Math. 4(4) (2016), 403–461. doi:10.4310/CJM.2016.v4.n4.a1.Google Scholar | DOI
[6] and , ‘Local algebraicity of analytic sets’, J. Reine Angew. Math. 352 (1984), 1–14. doi:10.1515/crll.1984.352.1.Google Scholar
[7] , Elements of Mathematics: Commutative Algebra (Hermann, Paris, 1972). Translated from the French.Google Scholar
[8] , Elements of Mathematics. Algebra, Part I: Chapters 1-3 (Hermann, Paris, 1974). Translated from the French.Google Scholar
[9] and , ‘The Drinfeld-Grinberg-Kazhdan theorem is false for singular arcs’, J. Inst. Math. Jussieu 16(4) (2017), 879–885. doi:10.1017/S1474748015000341.Google Scholar | DOI
[10] and , ‘The Drinfeld-Grinberg-Kazhdan theorem for formal schemes and singularity theory’, Confluentes Math. 9(1) (2017), 29–64. doi:10.5802/cml.35.Google Scholar | DOI
[11] and , ‘Smooth arcs on algebraic varieties’, J. Singul. 16 (2017), 130–140.Google Scholar
[12] and , ‘Cancellation and regular derivations’, J. Algebra Appl. 18(09) (2019), 1–9.Google Scholar | DOI
[13] and , ‘Finite formal model of toric singularities’, J. Math. Soc. Japan 71(3) (2019), 805–829.Google Scholar | DOI
[14] , ‘Cohomologie étale des espaces d’arcs’, Preprint, 2020, .Google Scholar | arXiv
[15] and , ‘Faisceaux pervers sur les espaces d’arcs’, Preprint, 2017, .Google Scholar | arXiv
[16] , and , ‘On the formal arc space of a reductive monoid’, Amer. J. Math. 138(1) (2016), 81–108. doi:10.1353/ajm.2016.0004.Google Scholar | DOI
[17] and , Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics vol. 39 (Cambridge University Press, Cambridge, 1993).Google Scholar
[18] , Local Geometry of the Space of Arcs, PhD dissertation, University of Vienna, 2020.Google Scholar
[19] and , ‘On the formal neighborhood of degenerate arcs’, Preprint, 2016, URL: https://homepage.univie.ac.at/herwig.hauser.Google Scholar
[20] and , ‘Jacobian discrepancies and rational singularities’, J. Eur. Math. Soc. (JEMS) 16(1) (2014), 165–199. doi:10.4171/JEMS/430.Google Scholar | DOI
[21] and , ‘Differentials on the arc space’, Duke Math. J. 169(2) (2020), 353–396. doi:10.1215/00127094-2019-0043.Google Scholar | DOI
[22] , and , ‘Divisorial valuations via arcs’, ‘Publ. Res. Inst. Math. Sci. 44(2) (2008), 425–448. doi:10.2977/prims/1210167333.Google Scholar | DOI
[23] and , ‘Germs of arcs on singular algebraic varieties and motivic integration’, Invent. Math. 135(1) (1999), 201–232. doi:10.1007/s002220050284.Google Scholar | DOI
[24] , ‘On the Grinberg–Kazhdan formal arc theorem’, Preprint, 2002, .Google Scholar | arXiv
[25] , ‘Grinberg–Kazhdan theorem and Newton groupoids’, Preprint, 2018, .Google Scholar | arXiv
[26] and , ‘Singularities with respect to Mather-Jacobian discrepancies’, in Commutative Algebra and Noncommutative Algebraic Geometry, Vol. II, Mathematical Science Research Institute Publications vol. 68 (Cambridge University Press, New York, 2015), 125–168.Google Scholar
[27] and , ‘Generically finite morphisms and formal neighborhoods of arcs’, Geom. Dedicata 139 (2009), 331–335. doi:10.1007/s10711-008-9320-7.Google Scholar | DOI
[28] , Commutative Algebra, Graduate Texts in Mathematics vol. 150 (Springer-Verlag, New York, 1995).Google Scholar | DOI
[29] and , ‘Primary ideals with finitely generated radical in a commutative ring’, Manuscripta Math. 78(2) (1993), 201–221. doi:10.1007/BF02599309.Google Scholar | DOI
[30] , Commutative Coherent Rings, Lecture Notes in Mathematics vol. 1371 (Springer-Verlag, Berlin, 1989).Google Scholar | DOI
[31] and , ‘Versal deformations of formal arcs’, Geom. Funct. Anal. 10(3) (2000), 543–555. doi:10.1007/PL00001628.Google Scholar | DOI
[32] , ‘Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas. I’, Publ. Math. Inst. Hautes Études Sci. 20 (1964), 101–355.Google Scholar | DOI
[33] and , ‘Arquile varieties – Varieties consisting of power series in a single variable’, Forum Math. Sigma 9 (2021), e78. doi:10.1017/fms.2021.73.Google Scholar | DOI
[34] , ‘Mather discrepancy and the arc spaces’, Ann. Inst. Fourier (Grenoble) 63(1) (2013), 89–111. doi:10.5802/aif.2756.Google Scholar | DOI
[35] , ‘Inequalities related to certain couples of local rings’, Acta Math. 112 (1964), 69–89. doi:10.1007/BF02391765.Google Scholar | DOI
[36] , Commutative Ring Theory, second edn, Cambridge Studies in Advanced Mathematics vol. 8 (Cambridge University Press, Cambridge, 1989).Google Scholar
[37] and , ‘Mather discrepancy as an embedding dimension in the space of arcs’, Publ. Res. Inst. Math. Sci. 54(1) (2018), 105–139. doi:10.4171/PRIMS/54-1-4.Google Scholar | DOI
[38] , ‘Weierstrass preparation theorem and singularities in the space of non-degenerate arcs’, Preprint, 2017, .Google Scholar | arXiv
[39] and , ‘Greenberg approximation and the geometry of arc spaces’, Comm. Algebra 38(11) (2010), 4077–4096. doi:10.1080/00927870903295398.Google Scholar | DOI
[40] , ‘A curve selection lemma in spaces of arcs and the image of the Nash map’, Compos. Math. 142(1) (2006), 119–130. doi:10.1112/S0010437X05001582.Google Scholar | DOI
[41] , ‘Towards the singular locus of the space of arcs’, Amer. J. Math. 131(2) (2009), 313–350. doi:10.1353/ajm.0.0046.Google Scholar | DOI
[42] , ‘Coordinates at stable points of the space of arcs’, J. Algebra 494 (2018), 40–76. doi:10.1016/j.jalgebra.2017.09.031.Google Scholar | DOI
[43] , ‘Primitive arcs on curves’, Bull. Belg. Math. Soc. Simon Stevin 23(4) (2016), 481–486.Google Scholar | DOI
[44] The Stacks project authors, The Stacks Project (2022). URL: http://stacks.math.columbia.edu.Google Scholar
[45] , ‘Jets via Hasse-Schmidt derivations’, in Diophantine Geometry, CRM Series vol. 4 (Edizioni della Normale, Pisa, Italy, 2007), 335–361.Google Scholar
[46] , ‘Local properties of analytic varieties’, in Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) (Princeton University Press, Princeton, NJ, 1965), 205–244.Google Scholar | DOI
Cité par Sources :
