The support of singular stochastic partial differential equations
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We obtain a generalisation of the Stroock–Varadhan support theorem for a large class of systems of subcritical singular stochastic partial differential equations driven by a noise that is either white or approximately self-similar. The main problem that we face is the presence of renormalisation. In particular, it may happen in general that different renormalisation procedures yield solutions with different supports. One of the main steps in our construction is the identification of a subgroup $\mathcal {H}$ of the renormalisation group such that any renormalisation procedure determines a unique coset $g\circ \mathcal {H}$. The support of the solution then depends only on this coset and is obtained by taking the closure of all solutions obtained by replacing the driving noises by smooth functions in the equation that is renormalised by some element of $g\circ \mathcal {H}$.One immediate corollary of our results is that the $\Phi ^4_3$ measure in finite volume has full support, and the associated Langevin dynamic is exponentially ergodic.
@article{10_1017_fmp_2021_18,
     author = {Martin Hairer and Philipp Sch\"onbauer},
     title = {The support of singular stochastic partial differential equations},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2021.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.18/}
}
TY  - JOUR
AU  - Martin Hairer
AU  - Philipp Schönbauer
TI  - The support of singular stochastic partial differential equations
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.18/
DO  - 10.1017/fmp.2021.18
LA  - en
ID  - 10_1017_fmp_2021_18
ER  - 
%0 Journal Article
%A Martin Hairer
%A Philipp Schönbauer
%T The support of singular stochastic partial differential equations
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.18/
%R 10.1017/fmp.2021.18
%G en
%F 10_1017_fmp_2021_18
Martin Hairer; Philipp Schönbauer. The support of singular stochastic partial differential equations. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2021.18

[BCCH17] Bruned, Y., Chandra, A., Chevyrev, I. and Hairer, M., ‘Renormalising SPDEs in regularity structures’, J. Eur. Math. Soc. 23(3) (2021), 869–947. doi: 10.4171/JEMS/1025, .Google Scholar | arXiv | DOI

[BDS18] Bogfjellmo, G., Dahmen, R. and Schmeding, A., ‘Overview of (pro-)Lie group structures on Hopf algebra character groups’, in Discrete Mechanics, Geometric Integration and Lie–Butcher Series (Springer International Publishing, Cham, Switzerland, 2018), 287–314.Google Scholar | DOI

[BGHZ19] Bruned, Y., Gabriel, F., Hairer, M. and Zambotti, L., ‘Geometric stochastic heat equations’, J. Amer. Math. Soc. 35(1) (2021), 1–80. doi: 10.1090/jams/977, .Google Scholar | arXiv | DOI

[BHZ19] Bruned, Y., Hairer, M. and Zambotti, L., ‘Algebraic renormalisation of regularity structures’, Invent. Math. 215(3) (2019), 1039–1156. doi:10.1007/s00222-018-0841-x.Google Scholar | DOI

[BMS95] Bally, V., Millet, A. and Sanz-Solé, M., ‘Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations’, Ann. Probab. 23(1) (1995), 178–222. doi:10.1214/aop/1176988383.Google Scholar | DOI

[Bog98] Bogachev, V. I., Gaussian Measures, Mathematical Surveys and Monographs vol. 62 (American Mathematical Society, Providence, RI, 1998), xii+433.Google Scholar

[But72] Butcher, J. C., ‘An algebraic theory of integration methods’, Math. Comp. 26, (1972), 79–106. doi:10.2307/2004720.Google Scholar | DOI

[CCHS20] Chandra, A., Chevyrev, I., Hairer, M. and Shen, H., ‘Langevin dynamic for the 2d Yang-Mills measure’, Preprint, 2020, .Google Scholar | arXiv

[CF18] Chouk, K. and Friz, P. K., ‘Support theorem for a singular SPDE: The case of gPAM’, Ann. Inst. Henri Poincaré Probab. Stat. 54(1) (2018), 202–219. doi:10.1214/16-AIHP800.Google Scholar | DOI

[CH16] Chandra, A. and Hairer, M., ‘An analytic BPHZ theorem for regularity structures’, Preprint, 2016, .Google Scholar | arXiv

[CM11] Chueshov, I. and Millet, A., ‘Stochastic two-dimensional hydrodynamical systems: Wong-Zakai approximation and support theorem’, Stoch. Anal. Appl. 29(4) (2011), 570–611. doi:10.1080/07362994.2011.581081.Google Scholar | DOI

[CMW19] Chandra, A., Moinat, A. and Weber, H., ‘A priori bounds for the equation in the full sub-critical regime’, 2019, .Google Scholar | arXiv

[CWM01] Cardon-Weber, C. and Millet, A., ‘A support theorem for a generalized Burgers SPDE’, Potential Anal. 15(4) (2001), 361–408. doi:10.1023/A:1011857909744.Google Scholar | DOI

[DVSS14] Delgado-Vences, F. J. and Sanz-Solé, M., ‘Approximation of a stochastic wave equation in dimension three, with application to a support theorem in Hölder norm’, Bernoulli 20(4) (2014), 2169–2216. doi:10.3150/13-BEJ554.Google Scholar | DOI

[FH14] Friz, P. K. and Hairer, M., A Course on Rough Paths, Universitext (Springer, Cham, Switzerland, 2014), xiv+251. With an introduction to regularity structures. doi:10.1007/978-3-319-08332-2.Google Scholar

[Fri05] Friz, P. K., (2005) Continuity of the Itô-Map for Hölder Rough Paths with Applications to the Support Theorem in Hölder Norm. In: Waymire, E.C., Duan, J. (eds) Probability and Partial Differential Equations in Modern Applied Mathematics. The IMA Volumes in Mathematics and its Applications, vol 140. (Springer, New York, NY. DOI:10.1007/978-0-387-29371-4_8.Google Scholar

[FV06] Friz, P. and Victoir, N., ‘A note on the notion of geometric rough paths’, Probab. Theory Related Fields 136(3) (2006), 395–416. doi:10.1007/s00440-005-0487-7.Google Scholar | DOI

[FV10a] Friz, P. and Victoir, N., ‘Differential equations driven by Gaussian signals’, Ann. Inst. Henri Poincaré Probab. Stat. 46(2) (2010), 369–413. doi:10.1214/09-AIHP202.Google Scholar | DOI

[FV10b] Friz, P. K. and Victoir, N. B., Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2010). doi:10.1017/CBO9780511845079.Google Scholar

[Ger20] Gerencsér, M., ‘Nondivergence form quasilinear heat equations driven by space-time white noise’, Ann. Inst. H. Poincaré Anal. Non Linéaire 37(3) (2020), 663–682. doi:10.1016/j.anihpc.2020.01.003.Google Scholar | DOI

[GL17] Gassiat, P. and Labbé, C., ‘Existence of densities for the dynamic model’, Ann. Inst. Henri Poincaré Probab. Stat. 56(1) (2020), 326–373. doi:10.1214/19-AIHP963, .Google Scholar | arXiv | DOI

[Hai13] Hairer, M., ‘Solving the KPZ equation’, Ann. of Math. (2) 178(2) (2013), 559–664. doi:10.4007/annals.2013.178.2.4.Google Scholar | DOI

[Hai14] Hairer, M., ‘A theory of regularity structures’, Invent. Math. 198(2) (2014), 269–504. doi:10.1007/s00222-014-0505-4.Google Scholar | DOI

[Hai16a] Hairer, M., ‘ Convergence of Markov processes ’, lecture notes (2016). URL: http://hairer.org/notes/Convergence.pdf.Google Scholar

[Hai16b] Hairer, M., ‘The motion of a random string’, Preprint, 2016, .Google Scholar | arXiv

[Hai18] Hairer, M., ‘An analyst’s take on the BPHZ theorem’, in Computation and Combinatorics in Dynamics, Stochastics and Control (Springer International Publishing, Cham, Switzerland, 2018), 429–476. doi:10.1007/978-3-030-01593-0_16.Google Scholar | DOI

[HM18] Hairer, M. and Mattingly, J., ‘The strong Feller property for singular stochastic PDEs’, Ann. Inst. Henri Poincaré Probab. Stat. 54(3) (2018), 1314–1340. doi:10.1214/17-AIHP840.Google Scholar | DOI

[JLM85] Jona-Lasinio, G. and Mitter, P. K., ‘On the stochastic quantization of field theory’, Comm. Math. Phys. 101(3) (1985), 409–436.Google Scholar | DOI

[LQZ02] Ledoux, M., Qian, Z. and Zhang, T., ‘Large deviations and support theorem for diffusion processes via rough paths’, Stochastic Process. Appl. 102(2) (2002), 265 – 283. doi:10.1016/S0304-4149(02)00176-X.Google Scholar | DOI

[Lyo98] Lyons, T. J., ‘Differential equations driven by rough signals’, Rev. Mat. Iberoam. 14(2) (1998), 215–310.Google Scholar | DOI

[MV93] Macias Virgós, E., ‘Nonclosed Lie subgroups of Lie groups’, Ann. Global Anal. Geom. 11(1) (1993), 35–40. doi:10.1007/BF00773362.Google Scholar

[MW17] Mourrat, J.-C. and Weber, H., ‘The dynamic model comes down from infinity’, Comm. Math. Phys. 356(3) (2017), 673–753. doi:10.1007/s00220-017-2997-4.Google Scholar | DOI

[MW20] Moinat, A. and Weber, H., ‘Space-time localisation for the dynamic model’, Comm. Pure Appl. Math. 73(12) (2020), 2519–2555. doi:10.1002/cpa.21925.Google Scholar | DOI

[Nua06] Nualart, D., The Malliavin Calculus and Related Topics. Second edition. Probability and its Applications (New York). (Springer, Berlin, 2006). xiv+382 pp. DOI: 10.1007/3-540-28329-3 Google Scholar

[Sch18] Schönbauer, P., ‘Malliavin calculus and density for singular stochastic partial differential equations’, Preprint, 2018, .Google Scholar | arXiv

[Str64] Stratonovič, R. L., ‘A new form of representing stochastic integrals and equations’, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1964(1) (1964), 3–12.Google Scholar

[SV72] Stroock, D. W. and Varadhan, S. R. S., ‘On the support of diffusion processes with applications to the strong maximum principle’, in Proc. Sixth Berkeley Symp. on Math. Statist. and Prob. , Vol. 3 (University of California Press, Berkeley, CA, 1972), 333–359. doi:.Google Scholar | DOI

[TW18] Tsatsoulis, P. and Weber, H., ‘Spectral gap for the stochastic quantization equation on the 2-dimensional torus’, Ann. Inst. Henri Poincaré Probab. Stat. 54(3) (2018), 1204–1249. doi:10.1214/17-AIHP837.Google Scholar | DOI

Cité par Sources :