Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2021_18,
     author = {Martin Hairer and Philipp Sch\"onbauer},
     title = {The support of singular stochastic partial differential equations},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2021.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.18/}
}
                      
                      
                    TY - JOUR AU - Martin Hairer AU - Philipp Schönbauer TI - The support of singular stochastic partial differential equations JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.18/ DO - 10.1017/fmp.2021.18 LA - en ID - 10_1017_fmp_2021_18 ER -
Martin Hairer; Philipp Schönbauer. The support of singular stochastic partial differential equations. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2021.18
[BCCH17] , , and , ‘Renormalising SPDEs in regularity structures’, J. Eur. Math. Soc. 23(3) (2021), 869–947. doi: 10.4171/JEMS/1025, .Google Scholar | arXiv | DOI
[BDS18] , and , ‘Overview of (pro-)Lie group structures on Hopf algebra character groups’, in Discrete Mechanics, Geometric Integration and Lie–Butcher Series (Springer International Publishing, Cham, Switzerland, 2018), 287–314.Google Scholar | DOI
[BGHZ19] , , and , ‘Geometric stochastic heat equations’, J. Amer. Math. Soc. 35(1) (2021), 1–80. doi: 10.1090/jams/977, .Google Scholar | arXiv | DOI
[BHZ19] , and , ‘Algebraic renormalisation of regularity structures’, Invent. Math. 215(3) (2019), 1039–1156. doi:10.1007/s00222-018-0841-x.Google Scholar | DOI
[BMS95] , and , ‘Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations’, Ann. Probab. 23(1) (1995), 178–222. doi:10.1214/aop/1176988383.Google Scholar | DOI
[Bog98] , Gaussian Measures, Mathematical Surveys and Monographs vol. 62 (American Mathematical Society, Providence, RI, 1998), xii+433.Google Scholar
[But72] , ‘An algebraic theory of integration methods’, Math. Comp. 26, (1972), 79–106. doi:10.2307/2004720.Google Scholar | DOI
[CCHS20] , , and , ‘Langevin dynamic for the 2d Yang-Mills measure’, Preprint, 2020, .Google Scholar | arXiv
[CF18] and , ‘Support theorem for a singular SPDE: The case of gPAM’, Ann. Inst. Henri Poincaré Probab. Stat. 54(1) (2018), 202–219. doi:10.1214/16-AIHP800.Google Scholar | DOI
[CH16] and , ‘An analytic BPHZ theorem for regularity structures’, Preprint, 2016, .Google Scholar | arXiv
[CM11] and , ‘Stochastic two-dimensional hydrodynamical systems: Wong-Zakai approximation and support theorem’, Stoch. Anal. Appl. 29(4) (2011), 570–611. doi:10.1080/07362994.2011.581081.Google Scholar | DOI
[CMW19] , and , ‘A priori bounds for the equation in the full sub-critical regime’, 2019, .Google Scholar | arXiv
[CWM01] and , ‘A support theorem for a generalized Burgers SPDE’, Potential Anal. 15(4) (2001), 361–408. doi:10.1023/A:1011857909744.Google Scholar | DOI
[DVSS14] and , ‘Approximation of a stochastic wave equation in dimension three, with application to a support theorem in Hölder norm’, Bernoulli 20(4) (2014), 2169–2216. doi:10.3150/13-BEJ554.Google Scholar | DOI
[FH14] and , A Course on Rough Paths, Universitext (Springer, Cham, Switzerland, 2014), xiv+251. With an introduction to regularity structures. doi:10.1007/978-3-319-08332-2.Google Scholar
[Fri05] , (2005) Continuity of the Itô-Map for Hölder Rough Paths with Applications to the Support Theorem in Hölder Norm. In: , (eds) Probability and Partial Differential Equations in Modern Applied Mathematics. The IMA Volumes in Mathematics and its Applications, vol 140. (Springer, New York, NY. DOI:10.1007/978-0-387-29371-4_8.Google Scholar
[FV06] and , ‘A note on the notion of geometric rough paths’, Probab. Theory Related Fields 136(3) (2006), 395–416. doi:10.1007/s00440-005-0487-7.Google Scholar | DOI
[FV10a] and , ‘Differential equations driven by Gaussian signals’, Ann. Inst. Henri Poincaré Probab. Stat. 46(2) (2010), 369–413. doi:10.1214/09-AIHP202.Google Scholar | DOI
[FV10b] and , Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2010). doi:10.1017/CBO9780511845079.Google Scholar
[Ger20] , ‘Nondivergence form quasilinear heat equations driven by space-time white noise’, Ann. Inst. H. Poincaré Anal. Non Linéaire 37(3) (2020), 663–682. doi:10.1016/j.anihpc.2020.01.003.Google Scholar | DOI
[GL17] and , ‘Existence of densities for the dynamic model’, Ann. Inst. Henri Poincaré Probab. Stat. 56(1) (2020), 326–373. doi:10.1214/19-AIHP963, .Google Scholar | arXiv | DOI
[Hai13] , ‘Solving the KPZ equation’, Ann. of Math. (2) 178(2) (2013), 559–664. doi:10.4007/annals.2013.178.2.4.Google Scholar | DOI
[Hai14] , ‘A theory of regularity structures’, Invent. Math. 198(2) (2014), 269–504. doi:10.1007/s00222-014-0505-4.Google Scholar | DOI
[Hai16a] , ‘ Convergence of Markov processes ’, lecture notes (2016). URL: http://hairer.org/notes/Convergence.pdf.Google Scholar
[Hai16b] , ‘The motion of a random string’, Preprint, 2016, .Google Scholar | arXiv
[Hai18] , ‘An analyst’s take on the BPHZ theorem’, in Computation and Combinatorics in Dynamics, Stochastics and Control (Springer International Publishing, Cham, Switzerland, 2018), 429–476. doi:10.1007/978-3-030-01593-0_16.Google Scholar | DOI
[HM18] and , ‘The strong Feller property for singular stochastic PDEs’, Ann. Inst. Henri Poincaré Probab. Stat. 54(3) (2018), 1314–1340. doi:10.1214/17-AIHP840.Google Scholar | DOI
[JLM85] and , ‘On the stochastic quantization of field theory’, Comm. Math. Phys. 101(3) (1985), 409–436.Google Scholar | DOI
[LQZ02] , and , ‘Large deviations and support theorem for diffusion processes via rough paths’, Stochastic Process. Appl. 102(2) (2002), 265 – 283. doi:10.1016/S0304-4149(02)00176-X.Google Scholar | DOI
[Lyo98] , ‘Differential equations driven by rough signals’, Rev. Mat. Iberoam. 14(2) (1998), 215–310.Google Scholar | DOI
[MV93] , ‘Nonclosed Lie subgroups of Lie groups’, Ann. Global Anal. Geom. 11(1) (1993), 35–40. doi:10.1007/BF00773362.Google Scholar
[MW17] and , ‘The dynamic model comes down from infinity’, Comm. Math. Phys. 356(3) (2017), 673–753. doi:10.1007/s00220-017-2997-4.Google Scholar | DOI
[MW20] and , ‘Space-time localisation for the dynamic model’, Comm. Pure Appl. Math. 73(12) (2020), 2519–2555. doi:10.1002/cpa.21925.Google Scholar | DOI
[Nua06] , The Malliavin Calculus and Related Topics. Second edition. Probability and its Applications (New York). (Springer, Berlin, 2006). xiv+382 pp. DOI: 10.1007/3-540-28329-3 Google Scholar
[Sch18] , ‘Malliavin calculus and density for singular stochastic partial differential equations’, Preprint, 2018, .Google Scholar | arXiv
[Str64] , ‘A new form of representing stochastic integrals and equations’, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1964(1) (1964), 3–12.Google Scholar
[SV72] and , ‘On the support of diffusion processes with applications to the strong maximum principle’, in Proc. Sixth Berkeley Symp. on Math. Statist. and Prob. , Vol. 3 (University of California Press, Berkeley, CA, 1972), 333–359. doi:.Google Scholar | DOI
[TW18] and , ‘Spectral gap for the stochastic quantization equation on the 2-dimensional torus’, Ann. Inst. Henri Poincaré Probab. Stat. 54(3) (2018), 1204–1249. doi:10.1214/17-AIHP837.Google Scholar | DOI
Cité par Sources :
