An $H^{3}(G,{\mathbb T})$-valued index of symmetry-protected topological phases with on-site finite group symmetry for two-dimensional quantum spin systems
Forum of Mathematics, Pi, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider symmetry-protected topological phases with on-site finite group G symmetry $\beta $ for two-dimensional quantum spin systems. We show that they have $H^{3}(G,{\mathbb T})$-valued invariant.
@article{10_1017_fmp_2021_17,
     author = {Yoshiko Ogata},
     title = {An $H^{3}(G,{\mathbb T})$-valued index of symmetry-protected topological phases with on-site finite group symmetry for two-dimensional quantum spin systems},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.17/}
}
TY  - JOUR
AU  - Yoshiko Ogata
TI  - An $H^{3}(G,{\mathbb T})$-valued index of symmetry-protected topological phases with on-site finite group symmetry for two-dimensional quantum spin systems
JO  - Forum of Mathematics, Pi
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.17/
DO  - 10.1017/fmp.2021.17
LA  - en
ID  - 10_1017_fmp_2021_17
ER  - 
%0 Journal Article
%A Yoshiko Ogata
%T An $H^{3}(G,{\mathbb T})$-valued index of symmetry-protected topological phases with on-site finite group symmetry for two-dimensional quantum spin systems
%J Forum of Mathematics, Pi
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.17/
%R 10.1017/fmp.2021.17
%G en
%F 10_1017_fmp_2021_17
Yoshiko Ogata. An $H^{3}(G,{\mathbb T})$-valued index of symmetry-protected topological phases with on-site finite group symmetry for two-dimensional quantum spin systems. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.17

[BL] Bachmann, S. and Lange, M., ‘Trotter product formulae for -automorphisms of quantum lattice systems’, Preprint, 2021, .Google Scholar | arXiv

[BMNS] Bachmann, S., Michalakis, S., Nachtergaele, B. and Sims, R., ‘Automorphic equivalence within gapped phases of quantum lattice systems’, Comm. Math. Phys. 309 (2012), 835–871.Google Scholar | DOI

[BR1] Bratteli, O. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics 1 (Springer-Verlag, Berlin-Heidelberg-New York, 1986).Google Scholar

[BR2] Bratteli, O. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics 2 (Springer-Verlag, Berlin-Heidelberg-New York, 1996).Google Scholar

[CGLW] Chen, X., Gu, Z. C., Liu, Z. X. and Wen, X. G., ‘Symmetry protected topological orders and the group cohomology of their symmetry group’, Phys. Rev. B 87 (2013), 155114.Google Scholar | DOI

[C] Connes, A., ‘Periodic automorphisms of the hyperfinite factor of type ’, Acta Sci. Math. (Szeged) 39(1–2) (1977), 39–66.Google Scholar

[DW] Dijkgraaf, R. and Witten, E., ‘Topological gauge theories and group cohomology’, Comm. Math. Phys. 129 (1990), 393–429.Google Scholar | DOI

[EN] Else, D. and Nayak, C., ‘Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge’, Phys. Rev. B 90, 235137.Google Scholar

[GW] Gu, Z.-C., and Wen, X.-G., Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Phys. Rev. B, 80, 155131 2009.Google Scholar | DOI

[J] Jones, V., ‘Actions of finite groups on the hyperfinite type factor’, Mem. Amer. Math. Soc. 28 (237), (1980).Google Scholar

[KOS] Kishimoto, A., Ozawa, N. and Sakai, S., ‘Homogeneity of the pure state space of a separable C*-algebra’, Canad. Math. Bull. 46 (2003), 365–37.Google Scholar | DOI

[MM] Miller, J. and Miyake, A., ‘Hierarchy of universal entanglement in 2D measurement-based quantum computation’, Quantum Inf. 2 (2016), 16036.Google Scholar

[MGSC] Molnar, A., Ge, Y., Schuch, N. and Cirac, J. I., ‘A generalization of the injectivity condition for projected entangled pair states’, J. Math. Phys. 59 (2018), 021902.Google Scholar | DOI

[MO] Moon, A. and Ogata, Y., ‘Automorphic equivalence within gapped phases in the bulk’, Journal of Functional Analysis 278(8) (2020), 108422.Google Scholar | DOI

[NO] Naaijkens, P. and Ogata, Y., In preparation.Google Scholar

[NSY] Nachtergaele, B., Sims, R. and Young, A., ‘Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms’, J. Math. Phys. 60 (2019), 061101.Google Scholar | DOI

[O1] Ogata, Y., ‘A -index of symmetry protected topological phases with time reversal symmetry for quantum spin chains’, Comm. Math. Phys. 374 (2020), 705–734.Google Scholar | DOI

[O2-1] One World Mathematical Physics Seminar 15. Dec. 2020 https://youtu.be/cXk6Fk5wD_4Google Scholar

[O2-2] Theoretical studies of topological phases of matter 17. Dec 2020 https://www.ms.u-tokyo.ac.jp/%7Eyasuyuki/yitp2020x.htmGoogle Scholar

[O2-3] Current Developments in Mathematics 4th January 2021 https://www.math.harvard.edu/event/current-developments-in-mathematics-2020/Google Scholar

[O3] Ogata, Y., ‘Classification of symmetry protected topological phases in quantum spin chains’. To appear in the Proceeding of Current of Current Development in Mathematics (2020), .Google Scholar | arXiv

[O4] Ogata, Y., ‘Classification of gapped ground state phases in quantum spin systems’. To appear in the Proceeding of ICM (2022), .Google Scholar | arXiv

[P] Powers, R. T., ‘Representations of uniformly hyperfinite algebras and their associated von Neumann rings’, Ann. of Math. (2) 86 (1967), 138–171.Google Scholar | DOI

[S] Sopenko, N. S., ‘An index for two-dimensional SPT states’, Preprint, YYYY, .Google Scholar | arXiv

[T] Takesaki, M., Theory of operator algebras, I, Encyclopaedia of Mathematical Sciences (Springer-Verlag, Location, 2002).Google Scholar

[Y] Yoshida, B., ‘Topological phases with generalized global symmetries’, Phys. Rev. B 93 (2016), 155131.Google Scholar | DOI

Cité par Sources :