Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\mathbb {T}^{4}$
Forum of Mathematics, Pi, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider the $\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \mathbb {R}^{3}/\mathbb {R}^{4}/\mathbb {T}^{3}/\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.
@article{10_1017_fmp_2021_16,
     author = {Xuwen Chen and Justin Holmer},
     title = {Unconditional uniqueness for the energy-critical nonlinear {Schr\"odinger} equation on $\mathbb {T}^{4}$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fmp.2021.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.16/}
}
TY  - JOUR
AU  - Xuwen Chen
AU  - Justin Holmer
TI  - Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\mathbb {T}^{4}$
JO  - Forum of Mathematics, Pi
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.16/
DO  - 10.1017/fmp.2021.16
LA  - en
ID  - 10_1017_fmp_2021_16
ER  - 
%0 Journal Article
%A Xuwen Chen
%A Justin Holmer
%T Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\mathbb {T}^{4}$
%J Forum of Mathematics, Pi
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.16/
%R 10.1017/fmp.2021.16
%G en
%F 10_1017_fmp_2021_16
Xuwen Chen; Justin Holmer. Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation on $\mathbb {T}^{4}$. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2021.16

[1] Adami, R., Golse, F. and Teta, A., ‘Rigorous derivation of the cubic NLS in dimension one’, J. Stat. Phys. 127 (2007), 1194–1220.Google Scholar | DOI

[2] Bourgain, J., ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger dquations’, Geom. Funct. Anal. 3 (1993), 107–156.Google Scholar | DOI

[3] Bourgain, J., ‘Global well-posedness of defocusing 3D critical NLS in the radial case’, J. Amer. Math. Soc. 12 (1999), 145–171.Google Scholar | DOI

[4] Bourgain, J. and Demeter, C., ‘The proof of the decoupling conjecture’, Ann. of Math. (2) 182 (2015), 351–389.Google Scholar | DOI

[5] Chen, T., Denlinger, R. and Pavlović, N., ‘Local well-posedness for Boltzmann’s equation and the Boltzmann hierarchy via Wigner transform’, Comm. Math. Phys. 368 (2019), 427–465.Google Scholar | DOI

[6] Chen, T., Hainzl, C., Pavlović, N. and Seiringer, R., ‘Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti’, Comm. Pure Appl. Math. 68 (2015), 1845–1884.Google Scholar | DOI

[7] Chen, T. and Pavlović, N., ‘On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies’, Discrete Contin. Dyn. Syst. 27 (2010), 715–739.Google Scholar | DOI

[8] Chen, T. and Pavlović, N., ‘The quintic NLS as the mean field limit of a boson gas with three-body interactions’, J. Funct. Anal. 260 (2011), 959–997.Google Scholar | DOI

[9] Chen, T. and Pavlović, N., ‘A new proof of existence of solutions for focusing and defocusing Gross-Pitaevskii hierarchies’, Proc. Amer. Math. Soc. 141 (2013), 279–293.Google Scholar | DOI

[10] Chen, T. and Pavlović, N., ‘Higher order energy conservation and global wellposedness of solutions for Gross-Pitaevskii hierarchies’, Commun. PDE, 39 (2014), 1597–1634.Google Scholar | DOI

[11] Chen, T. and Pavlović, N., Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in  based on spacetime norms, Ann. H. Poincare, 15 (2014), 543–588.Google Scholar | DOI

[12] Chen, T., Pavlović, N. and Tzirakis, N., ‘Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies’, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 1271–1290.Google Scholar | DOI

[13] Chen, T. and Taliaferro, K., Derivation in Strong Topology and Global Well-posedness of Solutions to the Gross-Pitaevskii Hierarchy, Comm. Partial Differential Equations 39 (2014), 1658–1693.Google Scholar | DOI

[14] Chen, X., ‘Classical proofs of Kato type smoothing estimates for the Schrödinger equation with quadratic potential in with application’, Differential Integral Equations 24 (2011), 209–230.Google Scholar

[15] Chen, X., ‘Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions’, Arch. Ration. Mech. Anal. 203 (2012), 455–497.Google Scholar | DOI

[16] Chen, X., ‘Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps’, J. Math. Pures Appl. (9) 98 (2012), 450–478.Google Scholar | DOI

[17] Chen, X., ‘On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic trap’, Arch. Ration. Mech. Anal. 210 (2013), 365–408.Google Scholar | DOI

[18] Chen, X. and Holmer, J., ‘On the rigorous derivation of the 2D cubic nonlinear Schrödinger equation from 3D quantum many-body dynamics’, Arch. Ration. Mech. Anal. 210 (2013), 909–954.Google Scholar | DOI

[19] Chen, X. and Holmer, J., ‘On the Klainerman-Machedon conjecture of the quantum BBGKY hierarchy with self-interaction’, J. Eur. Math. Soc. (JEMS) 18 (2016), 1161–1200.Google Scholar | DOI

[20] Chen, X. and Holmer, J., ‘Focusing quantum many-body dynamics: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation, Arch. Ration. Mech. Anal. 221 (2016), 631–676.Google Scholar | DOI

[21] Chen, X. and Holmer, J., ‘Correlation structures, many-body scattering processes and the derivation of the Gross-Pitaevskii hierarchy, Int. Math. Res. Not. IMRN 2016 (2016), 3051–3110.Google Scholar | DOI

[22] Chen, X. and Holmer, J., ‘Focusing quantum many-body dynamics II: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D’, Anal. PDE 10 (2017), 589–633.Google Scholar | DOI

[23] Chen, X. and Holmer, J., ‘The rigorous derivation of the 2D cubic focusing NLS from quantum many-body evolution’, Int. Math. Res. Not. IMRN (2017), 4173–4216.Google Scholar

[24] Chen, X. and Holmer, J., ‘The derivation of the energy-critical NLS from quantum many-body dynamics’, Invent. Math. 217 (2019), 433–547.Google Scholar | DOI

[25] Chen, X. and Holmer, J., ‘Quantitative derivation and scattering of the 3D cubic NLS in the energy space’, Preprint, 2021, .Google Scholar | arXiv

[26] Chen, X., Shen, S. and Zhang, Z., ‘The unconditional uniqueness for the energy-supercritical NLS’, Preprint, 2021, .Google Scholar | arXiv

[27] Chen, X. and Smith, P., ‘On the unconditional uniqueness of solutions to the infinite radial Chern-Simons-Schrödinger hierarchy’, Anal. PDE 7 (2014), 1683–1712.Google Scholar | DOI

[28] Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T., ‘Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in ’, Ann. of Math. (2) 167 (2008), 767–865.Google Scholar | DOI

[29] Erdős, L., Schlein, B. and Yau, H. T., ‘Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems’, Invent. Math. 167 (2007), 515–614.Google Scholar | DOI

[30] Erdős, L., Schlein, B. and Yau, H. T., ‘Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential’, J. Amer. Math. Soc. 22 (2009), 1099–1156.Google Scholar | DOI

[31] Erdős, L., Schlein, B. and Yau, H. T., ‘Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate’, Ann. of Math. (2) 172 (2010), 291–370.Google Scholar | DOI

[32] Gressman, P., Sohinger, V. and Staffilani, G., ‘On the uniqueness of solutions to the periodic 3D Gross-Pitaevskii hierarchy’, J. Funct. Anal. 266 (2014), 4705–4764.Google Scholar | DOI

[33] Grillakis, M., ‘On nonlinear Schrödinger equations’, Comm. Partial Differential Equations 25 (2000), 1827–1844.Google Scholar | DOI

[34] Herr, S. and Sohinger, V., ‘The Gross-Pitaevskii hierarchy on general rectangular tori’, Arch. Ration. Mech. Anal., 220 (2016), 1119–1158.Google Scholar | DOI

[35] Herr, S. and Sohinger, V., ‘Unconditional uniqueness results for the nonlinear Schrödinger equation’, Commun. Contemp. Math. 21 (2019), 1850058.Google Scholar | DOI

[36] Herr, S., Tataru, D. and Tzvetkov, N., ‘Global well-posedness of the energy critical Nonlinear Schrödinger equation with small initial data in ’, Duke Math. J. 159 (2011), 329–349.Google Scholar | DOI

[37] Herr, S., Tataru, D. and Tzvetkov, N., ‘Strichartz estimates for partially periodic solutions to Schrödinger equations in 4d and applications’, J. Reine Angew. Math. 690 (2014) 65–78.Google Scholar

[38] Hong, Y., Taliaferro, K. and Xie, Z., ‘Unconditional uniqueness of the cubic Gross-Pitaevskii Hierarchy with low regularity’, SIAM J. Math. Anal., 47 (2015), 3314–3341.Google Scholar | DOI

[39] Hong, Y., Taliaferro, K. and Xie, Z., ‘Uniqueness of solutions to the 3D quintic Gross-Pitaevskii hierarchy’, J. Funct. Anal. 270(1) (2016), 34–67.Google Scholar | DOI

[40] Ionescu, A. D. and Pausader, B., ‘The energy-critical defocusing NLS on ’, Duke Math. J. 161 (2012), 1581–1612.Google Scholar | DOI

[41] Kato, T., ‘On nonlinear Schrödinger equations, II. Hs-solutions and unconditional well-posedness’, J. Anal. Math. 67 (1995), 281–306.Google Scholar | DOI

[42] Kenig, C. and Merle, F., ‘Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case’, Invent. Math. 166 (2006), 645–675.Google Scholar | DOI

[43] Killip, R. and Vişan, M., ‘Scale invariant Strichartz estimates on tori and applications’, Math. Res. Lett. 23 (2016), 445–472.Google Scholar | DOI

[44] Kirkpatrick, K., Schlein, B. and Staffilani, G., ‘Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics’, Amer. J. Math. 133 (2011), 91–130.Google Scholar | DOI

[45] Kishimoto, N., ‘Unconditional local well-posedness for periodic NLS’, Preprint, 2019, .Google Scholar | arXiv

[46] Klainerman, S. and Machedon, M., ‘Space-time estimates for null forms and the local existence theorem’, Comm. Pure Appl. Math. 46 (1993), 1221–1268.Google Scholar | DOI

[47] Klainerman, S. and Machedon, M., ‘On the uniqueness of solutions to the Gross-Pitaevskii hierarchy’, Comm. Math. Phys. 279 (2008), 169–185.Google Scholar | DOI

[48] Koch, H. and Tataru, D., ‘Dispersive estimates for principally normal pseudodifferential operators’, Comm. Pure Appl. Math. 58(2) (2005), 217–284.Google Scholar | DOI

[49] Koch, H. and Tataru, D., ‘A priori bounds for the 1D cubic NLS in negative Sobolev spaces’, Int. Math. Res. Not. IMRN 2007 (2007), rnm053.Google Scholar | DOI

[50] Koch, H., Tataru, D. and Vişan, M., Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars vol. 45 (Birkhäuser, Basel, 2014).Google Scholar

[51] Lewin, M., Nam, P. T. and Rougerie, N., ‘Derivation of Hartree’s theory for generic mean-field Bose systems’, Adv. Math. 254 (2014), 570–621.Google Scholar | DOI

[52] Lugiato, L. A. and Lefever, R., ‘Spatial dissipative structures in passive optical systems’, Phys. Rev. Lett. 58 (1987), 2209–2211.Google ScholarPubMed | DOI

[53] Mendelson, D., Nahmod, A., Pavlović, N., Rosenzweig, M. and Staffilani, G., ‘A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation’, Adv. Math. 365 (2020), 107054.Google Scholar | DOI

[54] Mendelson, D., Nahmod, A., Pavlović, N., Rosenzweig, M. and Staffilani, G., ‘Poisson commuting energies for a system of infinitely many bosons’, Preprint, 2019, .Google Scholar | arXiv

[55] Mendelson, D., Nahmod, A., Pavlović, N. and Staffilani, G., ‘An infinite sequence of conserved quantities for the cubic Gross-Pitaevskii hierarchy on ’, Trans. Amer. Math. Soc. 371 (2019), 5179–5202.Google Scholar | DOI

[56] Ryckman, E. and Vişan, M., ‘Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in ’, Amer. J. Math. 129 (2007), 1–60.Google Scholar | DOI

[57] Sohinger, V., ‘A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on from the dynamics of many-body quantum systems’, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 1337–1365.Google Scholar | DOI

[58] Sohinger, V., ‘Local existence of solutions to randomized Gross-Pitaevskii hierarchies’, Trans. Amer. Math. Soc. 368 (2016), 1759–1835.Google Scholar | DOI

[59] Sohinger, V. and Staffilani, G., ‘Randomization and the Gross-Pitaevskii hierarchy’, Arch. Ration. Mech. Anal. 218 (2015), 417–485.Google Scholar | DOI

[60] Xie, Z., ‘Derivation of a nonlinear Schrödinger equation with a general power-type nonlinearity in ’, Differential Integral Equations 28 (2015), 455–504.Google Scholar

[61] Yue, H., ‘Global well-posedness of the energy-critical nonlinear Schrödinger equation on ’, Preprint, 2018, .Google Scholar | arXiv

Cité par Sources :