Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2021_13,
author = {Yvain Bruned and Katharina Schratz},
title = {Resonance-based schemes for dispersive equations via decorated trees},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fmp.2021.13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.13/}
}
TY - JOUR AU - Yvain Bruned AU - Katharina Schratz TI - Resonance-based schemes for dispersive equations via decorated trees JO - Forum of Mathematics, Pi PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.13/ DO - 10.1017/fmp.2021.13 LA - en ID - 10_1017_fmp_2021_13 ER -
Yvain Bruned; Katharina Schratz. Resonance-based schemes for dispersive equations via decorated trees. Forum of Mathematics, Pi, Tome 10 (2022). doi: 10.1017/fmp.2021.13
[1] , and , ‘A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime’, SIAM J. Numer. Anal. 52(5) (2014), 2488–2511. doi:10.1137/130950665.Google Scholar | DOI
[2] and , ‘Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime’, Numer. Math. 120 (2012), 189–229. doi:10.1007/s00211-011-0411-2.Google Scholar | DOI
[3] and , ‘A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov system in the high-plasma-frequency limit regime’, J. Comput. Phys. 327 (2016), 270–293. doi:10.1016/j.jcp.2016.09.046.Google Scholar | DOI
[4] , and , ‘Uniformly accurate oscillatory integrators for Klein–Gordon equations with asymptotic convergence to the classical NLS splitting’, Math. Comp. 87 (2018), 1227–1254. doi:10.1090/mcom/3263.Google Scholar | DOI
[5] and , ‘Uniformly accurate oscillatory integrators for the Klein–Gordon–Zakharov system from low- to high-plasma frequency regimes’, SIAM J. Numer. Anal. 57(1) (2019), 429–457. doi:10.1137/18M1177184.Google Scholar | DOI
[6] and , ‘BPHZ renormalisation and vanishing subcriticality limit of the fractional model’, (2019) Preprint .Google Scholar | arXiv
[7] , and , ‘B-series and order conditions for exponential integrators’, SIAM J. Numer. Anal. 43(4) (2005), 1715–1727. doi:10.1137/040612683.Google Scholar | DOI
[8] , and , ‘Order estimates in time of splitting methods for the nonlinear Schrödinger equation’, SIAM J. Numer. Anal. 40(1) (2002), 26–40. doi:10.1137/S0036142900381497.Google Scholar | DOI
[9] , ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations’, Geom. Funct. Anal. 3(1) (1993), 209–262. doi:10.1007/BF01895688.Google Scholar | DOI
[10] , ‘Recursive formulae in regularity structures’, Stoch. Partial Differ. Equ. Anal. Comput. 6(4) (2018), 525–564. doi:10.1007/s40072-018-0115-z.Google Scholar
[11] , , and , ‘Renormalising SPDEs in regularity structures’, J. Eur. Math. Soc. (JEMS) 23(3) (2021), 869–947. doi:10.4171/JEMS/1025.Google Scholar | DOI
[12] , , and , ‘Geometric stochastic heat equations’, J. Amer. Math. Soc. 35(1) (2022), 1–80. doi:10.1090/jams/977.Google Scholar
[13] , and , ‘Algebraic renormalisation of regularity structures’, Invent. Math. 215(3) (2019), 1039–1156. doi:10.1007/s00222-018-0841-x.Google Scholar | DOI
[14] , and , ‘Renormalisation of stochastic partial differential equations’, EMS Newsl. 115(3) (2020), 7–11. doi: 10.4171/NEWS/115/3.Google Scholar | DOI
[15] , and , ‘Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds’, Amer. J. Math. 126(3) (2004), 569–605. doi:10.1353/ajm.2004.0016.Google Scholar | DOI
[16] , ‘An algebraic theory of integration methods’, Math. Comp. 26 (1972), 79–106. doi:10.2307/2004720.Google Scholar | DOI
[17] , Numerical Methods for Ordinary Differential Equations, 3rd ed. (Wiley, Hoboken, 2016).Google Scholar | DOI
[18] , ‘B-series and exponential integrators’, IMAJNA 30(1) (2010), 131–140. doi:10.1093/imanum/drn086.Google Scholar
[19] , and , ‘Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series’, Adv. Appl. Math. 47(2) (2011), 282–308. doi:10.1016/j.aam.2009.08.003.Google Scholar | DOI
[20] and , ‘Exponential time integration of solitary waves of cubic Schrödinger equation’, Appl. Numer. Math. 91 (2015), 26–45. doi:10.1016/j.apnum.2015.01.001.Google Scholar | DOI
[21] , and , ‘Symmetric exponential integrators with an application to the cubic Schrödinger equation’, Found. Comput. Math. 8 (2008), 303–317. doi:10.1007/s10208-007-9016-7.Google Scholar | DOI
[22] and , ‘An analytic BPHZ theorem for regularity structures’, (2016) Preprint, .Google Scholar | arXiv
[23] , and , ‘The dynamical sine-Gordon model in the full subcritical regime’, (2018) Preprint, .Google Scholar | arXiv
[24] , and , ‘A priori bounds for the equation in the full sub-critical regime’, (2019) Preprint, .Google Scholar | arXiv
[25] , , and , ‘Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödingier equations’, Numer. Math. 129 (2015), 211–250. doi:10.1007/s00211-014-0638-9.Google Scholar | DOI
[26] , and , ‘Algebraic structures of B-series’, Found. Comput. Math. 10(4) (2010), 407–427. doi:10.1007/s10208-010-9065-1.Google Scholar | DOI
[27] , ‘Power series solution of a nonlinear Schrödinger equation’, in Mathematical Aspects of Nonlinear Dispersive Equations, Vol. 163 of Ann. of Math. Stud. (Princeton Univ. Press, Princeton, NJ, 2007), 131–155.Google Scholar
[28] and , ‘One-stage exponential integrators for nonlinear Schrödinger equations over long times’, BIT 52 (2012), 877–903. doi:10.1007/s10543-012-0385-1.Google Scholar | DOI
[29] , and , ‘Modulated Fourier expansions of highly oscillatory differential equations’, Found. Comput. Math. 3 (2003), 327–345. doi:10.1007/s10208-002-0062-x.Google Scholar | DOI
[30] and , ‘On commutators of singular integrals and bilinear singular integrals’, Trans. Amer. Math. Soc. 212 (1975), 315–331. doi:10.1090/S0002-9947-1975-0380244-8.Google Scholar | DOI
[31] and , ‘Hopf algebras, renormalization and noncommutative geometry’, Comm. Math. Phys. 199(1) (1998), 203–242. doi:10.1007/s002200050499.Google Scholar | DOI
[32] and , ‘Renormalization in quantum field theory and the Riemann–Hilbert problem I: the Hopf algebra structure of graphs and the main theorem’, Commun. Math. Phys. 210 (2000), 249–73. doi:10.1007/s002200050779.Google Scholar | DOI
[33] , ‘Exponential Runge–Kutta methods for the Schrödinger equation’, Appl. Numer. Math. 59(8) (2009), 1839–1857. doi:10.1016/j.apnum.2009.02.002.Google Scholar | DOI
[34] , Les fonctions résurgentes. Tome I, II and III [Mathematical Publications of Orsay 81 and 85] (Université de Paris-Sud, Département de Mathématique, Orsay, 1981 and 1985).Google Scholar
[35] ‘Singularités non abordables par la géométrie’, [Singularities that are inaccessible by geometry] Ann. Inst. Fourier (Grenoble) 42 (1992)(1–2, 73–164.Google Scholar | DOI
[36] , , and , Highly Oscillatory Problems (Cambridge University Press, Berlin, 2009).Google Scholar | DOI
[37] , Geometric Numerical Integration and Schrödinger Equations (European Math. Soc., Zürich, 2012).Google Scholar | DOI
[38] and , ‘Ecalle’s arborification coarborification transforms and Connes Kreimer Hopf algebra’, Ann. Sc. de l’Ecole Normale Sup. 50(1) (2017), 39–83. doi:10.24033/asens.2315.Google Scholar | DOI
[39] , ‘Generation of finite difference formulas on arbitrarily spaced grids’, Math. Comp. 51 (1988), 699–706. doi:10.1090/S0025-5718-1988-0935077-0.Google Scholar | DOI
[40] and , ‘Nonlinear Schrödinger equations and their spectral semi-discretisations over long times’, Found. Comput. Math. 20 (2010), 141–169. doi:10.1007/s10208-010-9059-z.Google Scholar | DOI
[41] , ‘Controlling rough paths’, J. Funct. Anal. 216(1) (2004), 86–140. doi:10.1016/j.jfa.2004.01.002.Google Scholar | DOI
[42] , ‘Ramification of rough paths’, J. Differ. Equ. 248(4) (2010), 693 – 721. doi:10.1016/j.jde.2009.11.015.Google Scholar | DOI
[43] , ‘Rough solutions for the periodic Korteweg–de Vries equation’, Commun. Pure Appl. Anal. 11(4) (2012), 709–733. doi:10.3934/cpaa.2012.11.709.Google Scholar | DOI
[44] , and , ‘Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS’, Commun. Math. Phys. 322(1) (2013), 19–48. doi:10.1007/s00220-013-1755-5.Google Scholar | DOI
[45] , and , Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Vol. 31 of Springer Series in Computational Mathematics (Springer, Berlin, 2006).Google Scholar
[46] , and , Solving Ordinary Differential Equations I: Nonstiff Problems (Springer, Berlin, 1987).Google Scholar | DOI
[47] , ‘A theory of regularity structures’, Invent. Math. 198(2) (2014), 269–504. doi:10.1007/s00222-014-0505-4.Google Scholar | DOI
[48] and , ‘The support of singular stochastic PDEs’, (2019) Preprint, .Google Scholar | arXiv
[49] and , ‘Exponential integrators’, Acta Numer. 19 (2010), 209–286. doi:10.1017/S0962492910000048.Google Scholar | DOI
[50] and , ‘An oscillatory integrator for the KdV equation’, Numer. Math. 136 (2017), 1117–1137. doi:10.1007/s00211-016-0859-1.Google Scholar | DOI
[51] , , and , Splitting for Partial Differential Equations with Rough Solutions (European Math. Soc., Zürich, 2010).Google Scholar | DOI
[52] , and , ‘Operator splitting methods for generalized Korteweg–de Vries equations’, J. Comput. Phys. 153(1) (1999), 203–222. doi:10.1006/jcph.1999.6273.Google Scholar | DOI
[53] , , and , ‘Operator splitting methods for the Korteweg–de Vries equation’, Math. Comp. 80 (2011), 821–846. doi:10.1090/S0025-5718-2010-02402-0.Google Scholar | DOI
[54] , and , ‘Operator splitting for partial differential equations with Burgers nonlinearity’, Math. Comp. 82 (2012), 173–185. doi:10.1090/S0025-5718-2012-02624-X.Google Scholar | DOI
[55] and , ‘Numerical dispersive schemes for the nonlinear Schrödinger equation’, SIAM J. Numer. Anal. 47(2) (2009), 1366–1390. doi:10.1137/070683787.Google Scholar | DOI
[56] , and , ‘B-series methods cannot be volume-preserving’, BIT 47 (2007), 351–378. doi:10.1007/s10543-006-0114-8.Google Scholar | DOI
[57] and , ‘Error bounds for exponential operator splittings’, BIT, 40 (2000), 735–744. doi:10.1023/A:1022396519656.Google Scholar | DOI
[58] and , ‘Endpoint Strichartz estimates’, Amer. J. Math. 120(5) (1998), 955–980. doi:10.1353/ajm.1998.0039.Google Scholar | DOI
[59] , ‘Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equation’, ETNA 29 (2008), 116–135. http://eudml.org/doc/117659.Google Scholar
[60] , and , ‘A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data’, SIAM J. Numer. Anal. 57(4) (2019), 1967–1986. doi:10.1137/18M1198375.Google Scholar | DOI
[61] and , Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, Vol. 14 (Cambridge University Press, Cambridge, 2004).Google Scholar
[62] , ‘On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations’, Math. Comp. 77(4) (2008), 2141–2153. doi:10.1090/S0025-5718-08-02101-7.Google Scholar | DOI
[63] , ‘On the nonexistence of path integrals’, Proc. Roy. Soc. London Ser. A 432(1885) (1991), 281–290. doi:10.1098/rspa.1991.0017.Google Scholar
[64] , ‘Differential equations driven by rough signals’, Rev. Mat. Iberoamericana 14(2) (1998), 215–310. doi:10.4171/RMI/240.Google Scholar | DOI
[65] and , ‘Error analysis for spectral approximation of the Korteweg–de Vries equation’, RAIRO - Modélisation mathématique et analyse numérique 22 (1988), 821–846. http://www.numdam.org/item/M2AN_1988__22_3_499_0/.Google Scholar
[66] , ‘Hopf algebras, from basics to applications to renormalization’, in Proceedings of the 5th Mathematical Meeting of Glanon: Algebra, Geometry and Applications to Physics (Glanon, Burgundy, France, 2001), 2–6.Google Scholar
[67] and , ‘Splitting methods’, Acta Numer. 11 (2002), 341–434. doi:10.1017/S0962492902000053.Google Scholar | DOI
[68] and , Lie–Butcher Series, Geometry, Algebra and Computation. Springer Lectures in Mathematics and Statistics Cambridge, (2017).Google Scholar
[69] and , ‘Word series for dynamical systems and their numerical integrators’, Found. Comp. Math. 17 (2017), 675–712. doi:10.1007/s10208-015-9295-3.Google Scholar | DOI
[70] , and , ‘Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity’, Found. Comput. Math. 21 (2021), 725–765. doi:10.1007/s10208-020-09468-7.Google Scholar | DOI
[71] , and , ‘Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces’, to appear in J. Eur. Math. Soc. (JEMS), .Google Scholar | arXiv
[72] and , ‘Low regularity exponential-type integrators for semilinear Schrödinger equations’, Found. Comput. Math. 18 (2018), 731–755. doi:10.1007/s10208-017-9352-1.Google Scholar | DOI
[73] and , ‘Two exponential-type integrators for the”good”Boussinesq equation’, Numer. Math. 143 (2019), 683–712. doi:10.1007/s00211-019-01064-4.Google Scholar | DOI
[74] and , ‘A general framework of low regularity integrators’, to appear in SIAM J. Numer. Anal. .Google Scholar | arXiv
[75] and , Numerical Hamiltonian Problems (Chapman and Hall, London, 1994).Google Scholar | DOI
[76] , and , ‘Low-regularity integrators for nonlinear Dirac equations’, Math. Comp. 90 (2021), 189–214. doi:10.1090/mcom/3557.Google Scholar | DOI
[77] , ‘Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations’, Duke Math. J. 44(3) (1977), 705–714. doi:10.1215/S0012-7094-77-04430-1.Google Scholar | DOI
[78] , Nonlinear Dispersive Equations. Local and Global Analysis (Amer. Math. Soc., Providence RI, 2006).Google Scholar
[79] , ‘Numerical solutions of the Korteweg–de Vries equation and its generalizations by the split-step Fourier method’, in (, editor) Nonlinear Wave Motion (Amer. Math. Soc., 1974), 215–216.Google Scholar
[80] , ‘Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations’, SIAM J. Numer. Anal. 50(6) (2012), 3231–3258. doi:10.1137/120866373.Google Scholar | DOI
Cité par Sources :