Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers
Forum of Mathematics, Pi, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

The article studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear wave equations given the knowledge of an associated source-to-solution map. We introduce a method to solve inverse problems for nonlinear equations using interaction of three waves that makes it possible to study the inverse problem in all globally hyperbolic spacetimes of the dimension $n+1\geqslant 3$ and with partial data. We consider the case when the set $\Omega _{\mathrm{in}}$, where the sources are supported, and the set $\Omega _{\mathrm{out}}$, where the observations are made, are separated. As model problems we study both a quasi-linear equation and a semi-linear wave equation and show in each case that it is possible to uniquely recover the background metric up to the natural obstructions for uniqueness that is governed by finite speed of propagation for the wave equation and a gauge corresponding to change of coordinates. The proof consists of two independent components. In the geometric part of the article we introduce a novel geometrical object, the three-to-one scattering relation. We show that this relation determines uniquely the topological, differential and conformal structures of the Lorentzian manifold in a causal diamond set that is the intersection of the future of the point $p_{in}\in \Omega _{\mathrm{in}}$ and the past of the point $p_{out}\in \Omega _{\mathrm{out}}$. In the analytic part of the article we study multiple-fold linearisation of the nonlinear wave equation using Gaussian beams. We show that the source-to-solution map, corresponding to sources in $\Omega _{\mathrm{in}}$ and observations in $\Omega _{\mathrm{out}}$, determines the three-to-one scattering relation. The methods developed in the article do not require any assumptions on the conjugate or cut points.
@article{10_1017_fmp_2021_11,
     author = {Ali Feizmohammadi and Matti Lassas and Lauri Oksanen},
     title = {Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2021.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.11/}
}
TY  - JOUR
AU  - Ali Feizmohammadi
AU  - Matti Lassas
AU  - Lauri Oksanen
TI  - Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers
JO  - Forum of Mathematics, Pi
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.11/
DO  - 10.1017/fmp.2021.11
LA  - en
ID  - 10_1017_fmp_2021_11
ER  - 
%0 Journal Article
%A Ali Feizmohammadi
%A Matti Lassas
%A Lauri Oksanen
%T Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers
%J Forum of Mathematics, Pi
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2021.11/
%R 10.1017/fmp.2021.11
%G en
%F 10_1017_fmp_2021_11
Ali Feizmohammadi; Matti Lassas; Lauri Oksanen. Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2021.11

[1] Alinhac, S., ‘Non-unicité du probléme de Cauchy’, Ann. Math. 117(2) (1983), 77–108.Google Scholar | DOI

[2] Alinhac, S. and Baouendi, M. S., ‘A non uniqueness result for operators of principal type’, Math. Z. 220 (1995), 561–568.Google Scholar | DOI

[3] Ambartsoumian, G., Felea, R., Nolan, C. and Quinto, E., ‘A class of singular Fourier Integral Operators in synthetic aperture radar imaging’, J. Funct. Anal. 264(1) (2013), 246–269.Google Scholar | DOI

[4] Ambartsoumian, G., Felea, R., Quinto, E. and Nolan, C., Singular FIOs in SAR imaging, II: Transmitter and receiver at different speeds. SIAM J. Math. Anal. 50(1) (2018), 591–621.Google Scholar | DOI

[5] Anderson, M., Katsuda, A., Kurylev, Y., Lassas, M. and Taylor, M., ‘Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem’, Invent. Math. 158 (2004), 261–321.Google Scholar | DOI

[6] Babich, V. and Ulin, V., ‘The complex space-time ray method and quasi-photons’, Zap. Nauch Semin. LOMI 117 (1981), 5–12 (in Russian).Google Scholar

[7] Barreto, A. S., Interactions of semilinear progressing waves in two or more space dimensions. Inverse Problems & Imaging, 14(6) 2020, 1057–1105.Google Scholar | DOI

[8] Barreto, A. S., Uhlmann, G. and Wang, Y., ‘Inverse scattering for critical semilinear wave equations’, Preprint, 2020, arXiv:2003.03822.Google Scholar

[9] Beem, J. K., Ehrlich, P. E. and Easley, K. L., Global Lorentzian Geometry , 2dn ed. (Marcel Dekker, New York, 1996).Google Scholar

[10] Belishev, M., ‘An approach to multidimensional inverse problems for the wave equation’, Dokl. Akad. Nauk SSSR 297 (1987), 524–527.Google Scholar

[11] Belishev, M. and Katchalov, A., ‘Boundary control and quasiphotons in the problem of a Riemannian manifold reconstruction via its dynamical data’, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 203 (1992), 21–50.Google Scholar

[12] Belishev, M. and Kurylev, Y., ‘To the reconstruction of a Riemannian manifold via its spectral data (BC-method)’, Comm. Partial Differential Equations 17 (1992), 767–804.Google Scholar | DOI

[13] Bernal, A. N. and Sánchez, M., Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Classical Quantum Gravity 24(3) (2007), 745–749.Google Scholar | DOI

[14] Bony, J.-M., Second microlocalization and propagation of singularities for semilinear hyperbolic equations. Hyperbolic equations and related topics (Katata/Kyoto, 1984), 11–49, Academic Press, Boston, MA, 1986.Google Scholar | DOI

[15] Cazenave, T. and Haraux, A., An Introduction to Semilinear Evolution Equations (Clarendon Press, Oxford, 1998).Google Scholar

[16] Chen, X., Lassas, M., Oksanen, L. and Paternain, G., ‘Detection of Hermitian connections in wave equations with cubic non-linearity’, Preprint, 2019, arXiv:1902.05711.Google Scholar

[17] Chen, X., Lassas, M., Oksanen, L. and Paternain, G., ‘Inverse problem for the Yang-Mills equations’, Preprint, 2020, arXiv.Google Scholar | DOI

[18] Cheney, M. and Borden, B., Fundamentals of Radar Imaging (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2009).Google Scholar | DOI

[19] De Hoop, M. and Saksala, T., ‘Inverse problem of travel time difference functions on a compact Riemannian manifold with boundary’, J. Geom. Anal. 29 (2019), 3308–3327.Google Scholar | DOI

[20] De Hoop, M., Uhlmann, G. and Wang, Y., ‘Nonlinear responses from the interaction of two progressing waves at an interface’, Ann. Inst. H. Poincare Anal. Non Lineaire 36 (2019), 347–363 Google Scholar | DOI

[21] De Hoop, M., Uhlmann, G. and Wang, Y., ‘Nonlinear interaction of waves in elastodynamics and an inverse problem’, Math. Ann. 376 (2020), 765–795.Google Scholar | DOI

[22] Dos Santos Ferreira, D., Kenig, C., Salo, M. and Uhlmann, G., ‘Limiting Carleman weights and anisotropic inverse problems’, Invent. Math. 178 (2009), 119–171 Google Scholar | DOI

[23] Dos Santos Ferreira, D., Kurylev, S., Lassas, M. and Salo, M., ‘The Calderón problem in transversally anisotropic geometries’, J. Eur. Math. Soc. 18(11) (2016), 2579–2626.Google Scholar | DOI

[24] Dos Santos Ferreira, D., Kurylev, Y., Lassas, M., Liimatainen, T. and Salo, M., The linearized Calderón problem in transversally anisotropic geometries. Int. Math. Res. Not. IMRN 2020, no. 22, 8729–8765.Google Scholar

[25] Eskin, G., ‘Inverse hyperbolic problems with time-dependent coefficients’, Commun. Partial Diff. Eqns. 32(11) (2007), 1737–1758.Google Scholar | DOI

[26] Feizmohammadi, A., Ilmavirta, J., Kian, Y. and Oksanen, L., Recovery of time dependent coefficients from boundary data for hyperbolic equations. J. Spectr. Theory Electronically published on August 10, 2021, (to appear in print).Google Scholar | DOI

[27] Feizmohammadi, A., Ilmavirta, J. and Oksanen, L., The light ray transform in stationary and static Lorentzian geometries. J. Geom. Anal. 31(4) (2021), 3656–3682.Google Scholar | DOI

[28] Feizmohammadi, A. and Oksanen, L., ‘An inverse problem for a semi-linear elliptic equation in Riemannian geometries’, J. Differ. Eqs. 269(6) (2020), 4683–4719.Google Scholar | DOI

[29] Feizmohammadi, A. and Oksanen, L., ‘Recovery of zeroth order coefficients in non-linear wave equations’, J. Inst. Math. Jussieu 2020, in press.Google Scholar | DOI

[30] Felea, R., Gaburro, R., Greenleaf, A. and Nolan, C., ‘Microlocal analysis of Doppler synthetic aperture radar’. Inverse Probl. Imag. 13(2019),1283–1307.Google Scholar | DOI

[31] Felea, R. and Greenleaf, A., ‘An FIO calculus for marine seismic imaging: folds and cross caps’. Comm. Partial Differential Equations 33 (2008), 45–77.Google Scholar | DOI

[32] Felea, R., Greenleaf, A. and Pramanik, M., ‘An FIO calculus for marine seismic imaging, II: Sobolev estimates’, Math. Ann. 352 (2012), 293–337.Google Scholar

[33] Felea, R., Krishnan, V., Nolan, C. and Quinto, E., ‘Common midpoint versus common offset acquisition geometry in seismic imaging’, Inverse Probl. Imag. 10(1) (2016), 87–102.Google Scholar

[34] Ghosh, T., Rüland, A., Salo, M. and Uhlmann, G., ‘Uniqueness and reconstruction for the fractional Calderón problem with a single measurement’, J. Funct. Anal. 279 (2020), 0022.Google Scholar | DOI

[35] Ghosh, T., Salo, M. and Uhlmann, G., ‘The Calderón problem for the fractional Schrödinger equation’, Anal. PDE 13 (2020), 455–475.Google Scholar | DOI

[36] Greenleaf, A. and Uhlmann, G., ‘Recovering singularities of a potential from singularities of scattering data’, Comm. Math. Phys. 157 (1993), 549–572.Google Scholar | DOI

[37] Guillarmou, C. and Tzou, L., ‘Leo. Calderon inverse problem with partial data on Riemann surfaces’, Duke Math. J. 158 (2011), 83–120.Google Scholar | DOI

[38] Guillemin, V. and Uhlmann, G., ‘Oscillatory integrals with singular symbols’, Duke Math. J. 48 (1981), 251–267.Google Scholar | DOI

[39] Hintz, P. and Uhlmann, G., ‘Reconstruction of Lorentzian manifolds from boundary light observation sets’, Int. Math. Res. Not. IMRN 22 2019, 6949–6987.Google Scholar | DOI

[40] Hintz, P., Uhlmann, G. and Zhai, J., ‘An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds’, Preprint, 2020, arXiv:2005.10447.Google Scholar | DOI

[41] De Hoop, M., Katsnelson, V. and Uhlmann, G., ‘Scattering control for the wave equation with unknown wave speed’, Arch. Ration. Mech. Anal. (ARMA) 231 (2019), 409–464.Google Scholar

[42] Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. I (Springer, Berlin, 1990).Google Scholar

[43] Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. III (Springer, Berlin, 1983).Google Scholar

[44] Hörmander, L., The Analysis of Linear Partial Differential Operators, Vol. IV (Springer, Berlin, 1983).Google Scholar

[45] Hörmander, L., ‘Lectures on nonlinear hyperbolic differential equations’, in Mathématiques & Applications, Vol. 26 Springer-Verlag Berlin Heidelberg (1997), 290 pp.Google Scholar

[46] Hounnonkpe, R. and Minguzzi, E., Globally hyperbolic spacetimes can be defined without the ‘causal’ condition. (English summary) Classical Quantum Gravity 36(19) (2019), 9 pp.Google Scholar | DOI

[47] Imanuvilov, O., Uhlmann, G. and Yamamoto, M., ‘The Calderon problem with partial data in two dimensions’, J. Amer. Math. Soc. 23 (2010), 655–691.Google Scholar | DOI

[48] Imanuvilov, O., Uhlmann, G. and Yamamoto, M., Inverse boundary value problem by measuring Dirichlet data and Neumann data on disjoint sets. Inverse Problems 27(8) (2011), 26 pp.Google Scholar | DOI

[49] Isakov, V., ‘On uniqueness in the inverse conductivity problem with local data’, Inverse Probl. Imag. 1(1) (2007), 95–105.Google Scholar | DOI

[50] Isozaki, H. and Kurylev, Y., Introduction to spectral theory and inverse problem on asymptotically hyperbolic manifolds. MSJ Memoirs, 32. Mathematical Society of Japan, Tokyo, 2014. viii+251 pp.Google Scholar

[51] Isozaki, H. and Uhlmann, G., ‘Hyperbolic geometry and local Dirichlet-Neumann map’, Adv. Math. 188 (2) (2004), 294–314.Google Scholar | DOI

[52] Ivanov, S., Distance difference representations of Riemannian manifolds. Geom. Dedicata 207 (2020), 167–192.Google Scholar | DOI

[53] Katchalov, A., Kurylev, Y. and Lassas, M., ‘Inverse boundary spectral problems’, in Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 123 (Chapman & Hall/CRC, Boca Raton, FL, 2001).Google Scholar

[54] Katchalov, A. and Kurylev, Ya., ‘Multidimensional inverse problem with incomplete boundary spectral data’, Commun. Partial Differ. Eqs. 23(1-2) (1998), 27–59,.Google Scholar | DOI

[55] Kato, T., ‘Quasi-linear equations of evolution, with applications to partial differential equations’, in Spectral Theory and Differential Equations, Lecture Notes in Math., Vol. 448 (Springer, Berlin, 1975), 25–70.Google Scholar | DOI

[56] Kenig, C. and Salo, M., ‘The Calderón problem with partial data on manifolds and applications’, Anal. PDE 6(8) (2013), 2003–2048.Google Scholar | DOI

[57] Kenig, C., Sjöstrand, J. and Uhlmann, G., ‘The Calderón problem with partial data’, Ann. Math. 165(2) (2007), 567–591.Google Scholar | DOI

[58] Kian, Y., Kurylev, Y., Lassas, M. and Oksanen, L., ‘Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets’, J. Differ. Eqs. 267(4) (2019), 2210–2238.Google Scholar | DOI

[59] Krupchyk, K. and Uhlmann, G., ‘The Calderon problem with partial data for conductivities with 3/2 derivatives’, Comm. Math. Phys. 348(1) (2016), 185–219.Google Scholar | DOI

[60] Krupchyk, K. and Uhlmann, G., ‘Inverse problems for advection diffusion equations in admissible geometries’, Comm. Partial Differ. Eqs. 43 (2018), 585–615.Google Scholar | DOI

[61] Krupchyk, K. and Uhlmann, G., Partial data inverse problems for semilinear elliptic equations with gradient nonlinearities. Math. Res. Lett. 27(6) (2020), 1801–1824.Google Scholar | DOI

[62] Krupchyk, K. and Uhlmann, G., ‘A remark on partial data inverse problems for semilinear elliptic equations’, Proc. Amer. Math. Soc. 148(2020), 681–685.Google Scholar | DOI

[63] Kurylev, Y., Lassas, M., Oksanen, L. and Uhlmann, G., ‘Inverse problem for Einstein-scalar field equations’, Preprint, arXiv:1406.4776 (2014).Google Scholar

[64] Kurylev, Y., Lassas, M. and Uhlmann, G., ‘Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations’, Invent. Math. 212(3) (2018), 781–857.Google Scholar | DOI

[65] Kurylev, Y., Oksanen, L. and Paternain, G., ‘Inverse problems for the connection Laplacian’, J. Differ. Geom. 110(3) (2018), 457–494.Google Scholar | DOI

[66] Lai, R. and Lin, Y.-H., ‘Global uniqueness for the fractional semilinear Schrödinger equation’, Proc. Amer. Math. Soc. 147 (2019), 1189–1199.Google Scholar | DOI

[67] Lassas, M., Inverse problems for linear and non-linear hyperbolic equations. Proceedings of the International Congress of Mathematicians–Rio de Janeiro 2018. Vol. IV. Invited lectures, 3751–3771, World Sci. Publ., Hackensack, NJ, 2018.Google Scholar

[68] Lassas, M., Liimatainen, T., Lin, Y. and Salo, M., ‘Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations’, Preprint, 2019 arXiv.Google Scholar | DOI

[69] Lassas, M., Liimatainen, T., Lin, Y.-H. and Salo, M., Inverse problems for elliptic equations with power type nonlinearities. J. Math. Pures Appl. 145(9) (2021), 44–82.Google Scholar | DOI

[70] Lassas, M. and Oksanen, L., ‘Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets’, Duke Math. J. 163 (2014), 1071–1103.Google Scholar | DOI

[71] Lassas, M. and Saksala, T., ‘Determination of a Riemannian manifold from the distance difference functions’, Asian J. Math. 23 (2019), 173–199.Google Scholar | DOI

[72] Lassas, M. and Uhlmann, G., ‘On determining a Riemannian manifold from the Dirichlet-to-Neumann map’, Ann. Sci. Ecole Norm. Sup. 34 (2001), 771–787.Google Scholar | DOI

[73] Lassas, M., Uhlmann, G. and Wang, Y., ‘Inverse problems for semilinear wave equations on Lorentzian manifolds’, Commun. Math. Phys. 360 (2018) 555–609.Google Scholar | DOI

[74] Lassas, M., Uhlmann, G. and Wang, Y., ‘Determination of vacuum space-times from the Einstein-Maxwell equations’, (2017), arXiv:1703.10704.Google Scholar

[75] Lindblad, H. and Tohaneanu, M., Global existence for quasilinear wave equations close to Schwarzschild. Comm. Partial Differential Equations 43(6) (2018), 893–944.Google Scholar | DOI

[76] Manasse, F. K. and Misner, C. W., ‘Fermi normal coordinates and some basic concepts in differential geometry’, J. Math. Phys. 4 (1963) 735–745.Google Scholar | DOI

[77] Melrose, R. and Ritter, N., ‘Interaction of nonlinear progressing waves for semilinear wave equations’, Ann. Math. 121 (1985), 187–213.Google Scholar | DOI

[78] Melrose, R. and Uhlmann, G., ‘Lagrangian intersection and the Cauchy problem’, Comm. Pure Appl. Math. 32 (1979), 483–519.Google Scholar | DOI

[79] O’Neill, B., ‘Semi-Riemannian Geometry with Applications to Relativity, Vol. 103 (Academic Press, San Diego, 1983).Google Scholar

[80] Oksanen, L., Salo, M., Stefanov, P., and Uhlmann, G., ‘Inverse problems for real principal type operators’, Preprint, (2020), arXiv:2001.07599.Google Scholar

[81] Ralston, J., Gaussian beams and the propagation of singularities. Studies in partial differential equations, 206–248, MAA Stud. Math., 23, Math. Assoc. America, Washington, DC, 1982.Google Scholar

[82] Rauch, J. and Reed, M., ‘Singularities produced by the nonlinear interaction of three progressing waves; examples’, Comm. PDE 7 (1982), 1117–1133.Google Scholar | DOI

[83] Sa Barreto, A. and Wang, Y., Singularities generated by the triple interaction of semilinear conormal waves. Anal. PDE 14(1) (2021), 135–170.Google Scholar | DOI

[84] Sogge, D. C., Lectures on nonlinear wave equations. Monographs in Analysis, II. International Press, Boston, MA, 1995. vi+159 pp.Google Scholar

[85] Stefanov, P., ‘Support theorems for the light ray transform on analytic Lorentzian manifolds’, Proc. Amer. Math. Soc. 145 (2017), 1259–1274.Google Scholar | DOI

[86] Stefanov, P., Uhlmann, G. and Vasy, A., Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge. Ann. of Math. (2) 194(1) (2021), 1–95.Google Scholar | DOI

[87] Stefanov, P. and Yang, Y., ‘The inverse problem for the Dirichlet-to-Neumann map on Lorentzian manifolds’, Anal. PDE. 11(6) (2018), 1381–1414.Google Scholar | DOI

[88] Stolk, C. and De Hoop, M., ‘Microlocal analysis of seismic inverse scattering in anisotropic elastic media’, Comm. Pure Appl. Math. 55 (2002), 261–301.Google Scholar | DOI

[89] Tataru, D., ‘Unique continuation for solutions to PDE; between Hörmander’s theorem and Holmgren’s theorem’, Commun. Partial Differ. Eqs., 20 (1995), 855–884.Google Scholar

[90] Taylor, M. E., Partial Differential Equations III: Nonlinear Equations (Applied Mathematical Sciences, New York, 2011).Google Scholar | DOI

[91] Uhlmann, G. and Wang, Y., Determination of space-time structures from gravitational perturbations. Comm. Pure Appl. Math. 73(6) (2020), 1315–1367.Google Scholar | DOI

[92] Wang, Y. and Zhou, T., Inverse problems for quadratic derivative nonlinear wave equations, Comm. Partial Differential Equations 44(11) (2019), 1140–1158.Google Scholar | DOI

[93] Wang, Q., Lectures on nonlinear wave equations, online slides, http://people.maths.ox.ac.uk/wangq1/Lecture_notes/nonlinear_wave_9.pdf Google Scholar

Cité par Sources :