Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_9,
author = {GEORGE LUSZTIG and ZHIWEI YUN},
title = {ENDOSCOPY {FOR} {HECKE} {CATEGORIES,} {CHARACTER} {SHEAVES} {AND} {REPRESENTATIONS}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fmp.2020.9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.9/}
}
TY - JOUR AU - GEORGE LUSZTIG AU - ZHIWEI YUN TI - ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.9/ DO - 10.1017/fmp.2020.9 LA - en ID - 10_1017_fmp_2020_9 ER -
GEORGE LUSZTIG; ZHIWEI YUN. ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.9
[1] , and , ‘Faisceaux pervers’, inAnalysis and Topology on Singular Spaces, I, Astérisque (Soc. Math. France, Paris, 1982), 5–171.Google Scholar
[2] and , The character theory of a complex group, Preprint, 2009, .Google Scholar
[3] and , Equivariant Sheaves and Functors, Lecture Notes in Mathematics, 1578 (Springer, Berlin, 1994), iv+139 pp.Google Scholar | DOI
[4] and , ‘Equivariant Satake category and Kostant-Whittaker reduction’, Mosc. Math. J. 8(1) (2008), 39–72.Google Scholar | DOI
[5] , and , ‘Character D-modules via Drinfeld center of Harish-Chandra bimodules’, Invent. Math. 188 (2012), 589–620.Google Scholar | DOI
[6] and , ‘On Koszul duality for Kac-Moody groups (with appendices by Zhiwei Yun) Represent’, Theory 17 (2013), 1–98.Google Scholar
[7] and , ‘Representations of reductive groups over finite fields’, Ann. of Math. (2) 103 (1976), 103–161.Google Scholar | DOI
[8] , ‘La conjecture de Weil II’, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137–252.Google Scholar | DOI
[9] , ‘Perverse sheaves and ℂ∗ -actions’, J. Amer. Math. Soc. 4(3) (1991), 483–490.Google Scholar
[10] and , ‘Tortile Yang-Baxter operators in tensor categories’, J. Pure Appl. Alg. 71 (1991), 43–51.Google Scholar | DOI
[11] and , ‘Representations of Coxeter groups and Hecke algebras’, Invent. Math. 53 (1979), 165–184.Google Scholar | DOI
[12] , Characters of Reductive Groups Over Finite Fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 877–880. PWN, Warsaw, 1984.Google Scholar
[13] , Characters of Reductive Groups Over a Finite Field, Annals of Mathematics Studies, 107 (Princeton University Press, Princeton, NJ, 1984), xxi+384 pp.Google Scholar | DOI
[14] , ‘Character sheaves, I’, Adv. Math. 56(3) (1985), 193–237.Google Scholar | DOI
[15] , ‘Character sheaves, V’, Adv. Math. 61(2) (1986), 103–155.Google Scholar | DOI
[16] , ‘On the representations of reductive groups with disconnected center’, Astérisque 168 (1988), 157–166.Google Scholar
[17] , ‘Character sheaves on disconnected groups VII’, Represent. Theory 9 (2005), 209–266.Google Scholar | DOI
[18] , ‘Irreducible representations of finite spin groups’, Represent. Theory 12 (2008), 1–36.Google Scholar | DOI
[19] , ‘Character sheaves on disconnected groups X’, Represent. Theory 13 (2009), 82–140.Google Scholar | DOI
[20] , ‘Truncated convolution of character sheaves’, Bull. Inst. Math. Acad. Sin. (N.S.) 10(1) (2015), 1–72.Google Scholar
[21] , ‘Unipotent representations as a categorical centre’, Represent. Theory 19 (2015), 211–235.Google Scholar | DOI
[22] , ‘Non-unipotent character sheaves as a categorical centre’, Bull. Inst. Math. Acad. Sin. (N.S.) 11(4) (2016), 603–731.Google Scholar
[23] , ‘Non-unipotent representations and categorical centres’, Bull. Inst. Math. Acad. Sin. (N.S.) 12(3) (2017), 205–296.Google Scholar
[24] , ‘Conjugacy classes in reductive groups and two-sided cells’, Bull. Inst. Math. Acad. Sinica (N.S.) 14 (2019), 265–293.Google Scholar
[25] , Categories for the Working Mathematician (Second Edition), Graduate Texts in Mathematics, 5 Springer, New York, 1998, xii+314 pp.Google Scholar
[26] , ‘Representations, duals and quantum doubles of monoidal categories, Rend’, Circ. Mat. Palermo 26 (1991), 197–206.Google Scholar
[27] , ‘Kategorie 𝓞, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe’, J. Amer. Math. Soc. 3(2) (1990), 421–445.Google Scholar
[28] , ‘Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen’, J. Inst. Math. Jussieu 6(3) (2007), 501–525.Google Scholar | DOI
[29] , Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, R.I., 1968).Google Scholar | DOI
[30] , ‘Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini’, C. R. Acad. Sci. Paris Ser. A 264 (1967), A334–A347.Google Scholar
[31] , Rigidity in Automorphic Representations and Local Systems, Current Developments in Mathematics (2013), 73–168, Int. Press, Somerville, MA, 2014.Google Scholar | DOI
[32] , Higher signs for Coxeter groups, Preprint, 2019, .Google Scholar
Cité par Sources :