ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

For a reductive group $G$ over a finite field, we show that the neutral block of its mixed Hecke category with a fixed monodromy under the torus action is monoidally equivalent to the mixed Hecke category of the corresponding endoscopic group $H$ with trivial monodromy. We also extend this equivalence to all blocks. We give two applications. One is a relationship between character sheaves on $G$ with a fixed semisimple parameter and unipotent character sheaves on the endoscopic group $H$, after passing to asymptotic versions. The other is a similar relationship between representations of $G(\mathbb{F}_{q})$ with a fixed semisimple parameter and unipotent representations of $H(\mathbb{F}_{q})$.
@article{10_1017_fmp_2020_9,
     author = {GEORGE LUSZTIG and ZHIWEI YUN},
     title = {ENDOSCOPY {FOR} {HECKE} {CATEGORIES,} {CHARACTER} {SHEAVES} {AND} {REPRESENTATIONS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.9/}
}
TY  - JOUR
AU  - GEORGE LUSZTIG
AU  - ZHIWEI YUN
TI  - ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.9/
DO  - 10.1017/fmp.2020.9
LA  - en
ID  - 10_1017_fmp_2020_9
ER  - 
%0 Journal Article
%A GEORGE LUSZTIG
%A ZHIWEI YUN
%T ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.9/
%R 10.1017/fmp.2020.9
%G en
%F 10_1017_fmp_2020_9
GEORGE LUSZTIG; ZHIWEI YUN. ENDOSCOPY FOR HECKE CATEGORIES, CHARACTER SHEAVES AND REPRESENTATIONS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.9

[1] Beilinson, A., Bernstein, J. and Deligne, P., ‘Faisceaux pervers’, inAnalysis and Topology on Singular Spaces, I, Astérisque (Soc. Math. France, Paris, 1982), 5–171.Google Scholar

[2] Ben-Zvi, D. and Nadler, D., The character theory of a complex group, Preprint, 2009, .Google Scholar

[3] Bernstein, J. and Lunts, V., Equivariant Sheaves and Functors, Lecture Notes in Mathematics, 1578 (Springer, Berlin, 1994), iv+139 pp.Google Scholar | DOI

[4] Bezrukavnikov, R. and Finkelberg, M., ‘Equivariant Satake category and Kostant-Whittaker reduction’, Mosc. Math. J. 8(1) (2008), 39–72.Google Scholar | DOI

[5] Bezrukavnikov, R., Finkelberg, M. and Ostrik, V., ‘Character D-modules via Drinfeld center of Harish-Chandra bimodules’, Invent. Math. 188 (2012), 589–620.Google Scholar | DOI

[6] Bezrukavnikov, R. and Yun, Z., ‘On Koszul duality for Kac-Moody groups (with appendices by Zhiwei Yun) Represent’, Theory 17 (2013), 1–98.Google Scholar

[7] Deligne, P. and Lusztig, G., ‘Representations of reductive groups over finite fields’, Ann. of Math. (2) 103 (1976), 103–161.Google Scholar | DOI

[8] Deligne, P., ‘La conjecture de Weil II’, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137–252.Google Scholar | DOI

[9] Ginsburg, V., ‘Perverse sheaves and ℂ∗ -actions’, J. Amer. Math. Soc. 4(3) (1991), 483–490.Google Scholar

[10] Joyal, A. and Street, R., ‘Tortile Yang-Baxter operators in tensor categories’, J. Pure Appl. Alg. 71 (1991), 43–51.Google Scholar | DOI

[11] Kazhdan, D. and Lusztig, G., ‘Representations of Coxeter groups and Hecke algebras’, Invent. Math. 53 (1979), 165–184.Google Scholar | DOI

[12] Lusztig, G., Characters of Reductive Groups Over Finite Fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 877–880. PWN, Warsaw, 1984.Google Scholar

[13] Lusztig, G., Characters of Reductive Groups Over a Finite Field, Annals of Mathematics Studies, 107 (Princeton University Press, Princeton, NJ, 1984), xxi+384 pp.Google Scholar | DOI

[14] Lusztig, G., ‘Character sheaves, I’, Adv. Math. 56(3) (1985), 193–237.Google Scholar | DOI

[15] Lusztig, G., ‘Character sheaves, V’, Adv. Math. 61(2) (1986), 103–155.Google Scholar | DOI

[16] Lusztig, G., ‘On the representations of reductive groups with disconnected center’, Astérisque 168 (1988), 157–166.Google Scholar

[17] Lusztig, G., ‘Character sheaves on disconnected groups VII’, Represent. Theory 9 (2005), 209–266.Google Scholar | DOI

[18] Lusztig, G., ‘Irreducible representations of finite spin groups’, Represent. Theory 12 (2008), 1–36.Google Scholar | DOI

[19] Lusztig, G., ‘Character sheaves on disconnected groups X’, Represent. Theory 13 (2009), 82–140.Google Scholar | DOI

[20] Lusztig, G., ‘Truncated convolution of character sheaves’, Bull. Inst. Math. Acad. Sin. (N.S.) 10(1) (2015), 1–72.Google Scholar

[21] Lusztig, G., ‘Unipotent representations as a categorical centre’, Represent. Theory 19 (2015), 211–235.Google Scholar | DOI

[22] Lusztig, G., ‘Non-unipotent character sheaves as a categorical centre’, Bull. Inst. Math. Acad. Sin. (N.S.) 11(4) (2016), 603–731.Google Scholar

[23] Lusztig, G., ‘Non-unipotent representations and categorical centres’, Bull. Inst. Math. Acad. Sin. (N.S.) 12(3) (2017), 205–296.Google Scholar

[24] Lusztig, G., ‘Conjugacy classes in reductive groups and two-sided cells’, Bull. Inst. Math. Acad. Sinica (N.S.) 14 (2019), 265–293.Google Scholar

[25] Maclane, S., Categories for the Working Mathematician (Second Edition), Graduate Texts in Mathematics, 5 Springer, New York, 1998, xii+314 pp.Google Scholar

[26] Majid, S., ‘Representations, duals and quantum doubles of monoidal categories, Rend’, Circ. Mat. Palermo 26 (1991), 197–206.Google Scholar

[27] Soergel, W., ‘Kategorie 𝓞, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe’, J. Amer. Math. Soc. 3(2) (1990), 421–445.Google Scholar

[28] Soergel, W., ‘Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen’, J. Inst. Math. Jussieu 6(3) (2007), 501–525.Google Scholar | DOI

[29] Steinberg, R., Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, R.I., 1968).Google Scholar | DOI

[30] Yokonuma, T., ‘Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini’, C. R. Acad. Sci. Paris Ser. A 264 (1967), A334–A347.Google Scholar

[31] Yun, Z., Rigidity in Automorphic Representations and Local Systems, Current Developments in Mathematics (2013), 73–168, Int. Press, Somerville, MA, 2014.Google Scholar | DOI

[32] Yun, Z., Higher signs for Coxeter groups, Preprint, 2019, .Google Scholar

Cité par Sources :