BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO-$p$ GROUPS
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

In their book Subgroup Growth, Lubotzky and Segal asked: What are the possible types of subgroup growth of the pro-$p$ group? In this paper, we construct certain extensions of the Grigorchuk group and the Gupta–Sidki groups, which have all possible types of subgroup growth between $n^{(\log n)^{2}}$ and $e^{n}$. Thus, we give an almost complete answer to Lubotzky and Segal’s question. In addition, we show that a class of pro-$p$ branch groups, including the Grigorchuk group and the Gupta–Sidki groups, all have subgroup growth type $n^{\log n}$.
@article{10_1017_fmp_2020_8,
     author = {YIFTACH BARNEA and JAN-CHRISTOPH SCHLAGE-PUCHTA},
     title = {BRANCH {GROUPS,} {ORBIT} {GROWTH,} {AND} {SUBGROUP} {GROWTH} {TYPES} {FOR} {PRO-}$p$ {GROUPS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.8/}
}
TY  - JOUR
AU  - YIFTACH BARNEA
AU  - JAN-CHRISTOPH SCHLAGE-PUCHTA
TI  - BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO-$p$ GROUPS
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.8/
DO  - 10.1017/fmp.2020.8
LA  - en
ID  - 10_1017_fmp_2020_8
ER  - 
%0 Journal Article
%A YIFTACH BARNEA
%A JAN-CHRISTOPH SCHLAGE-PUCHTA
%T BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO-$p$ GROUPS
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.8/
%R 10.1017/fmp.2020.8
%G en
%F 10_1017_fmp_2020_8
YIFTACH BARNEA; JAN-CHRISTOPH SCHLAGE-PUCHTA. BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO-$p$ GROUPS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.8

[1] Alexoudas, T., Klopsch, B. and Thillaisundaram, A., ‘Maximal subgroups of multi-edge spinal groups’, Groups Geom. Dyn. 10 (2016), 619–648.Google Scholar | DOI

[2] Ershov, M. and Jaikin-Zapirain, A., ‘Groups of positive weighted deficiency and their applications’, J. Reine Angew. Math. 677 (2013), 71–134.Google Scholar

[3] Fernandez-Alcober, G. and Zugadi-Reizabal, A., ‘GGS-groups: order of congruence quotients and Hausdorff dimension’, Trans. Amer. Math. Soc. 366 (2014), 1993–2017.Google Scholar | DOI

[4] Garrido, A., ‘Abstract commensurability and the Gupta-Sidki group’, Groups Geom. Dyn. 10 (2016), 523–543.Google Scholar | DOI

[5] Grigorchuk, R. I., ‘Just infinite branch groups’, inNew Horizons in pro-p Groups (eds. Du Sautoy, M., Segal, D. and Shalev, A.) Birkhäuser Progress in Mathematics, 184 (Birkhäuser Verlag, Basel, 2000), 121–179.Google Scholar | DOI

[6] Grigorchuk, R. I. and Wilson, J. S., ‘A structural property concerning abstract commensurability of subgroups’, J. Lond. Math. Soc. (2) 68 (2003), 671–682.Google Scholar | DOI

[7] Klopsch, B., 1999 ‘Substitution Groups, Subgroup Growth and Other Topics’, D.Phil. Thesis, University of Oxford.Google Scholar

[8] Lubotzky, A. and Segal, D., Subgroup Growth, Birkhäuser Progress in Mathematics, 212 (Birkhäuser Verlag, Basel, 2003).Google Scholar | DOI

[9] Pervova, E. L., ‘Maximal subgroups of some non locally finite p-groups’, Internat. J. Algebra Comput. 15 (2005), 1129–1150.Google Scholar | DOI

[10] Pyber, L., ‘Groups of intermediate subgroup growth and a problem of Grothendieck’, Duke Math. J. 121 (2004), 169–188.Google Scholar | DOI

[11] Segal, D., ‘The finite images of finitely generated groups’, Proc. Lond. Math. Soc. (3) 82 (2001), 597–613.Google Scholar | DOI

[12] Segal, D. and Shalev, A., ‘Groups with fractionally exponential subgroup growth’, J. Pure Appl. Algebra 88 (1993), 205–223.Google Scholar | DOI

[13] Sidki, S., ‘On a 2-generated infinite 3-group: subgroups and automorphisms’, J. Algebra 110 (1987), 24–55.Google Scholar | DOI

[14] Shalev, A., ‘Growth functions p-adic analytic groups and groups of finite coclass’, J. Lond. Math. Soc. (2) 46 (1992), 111–122.Google Scholar | DOI

[15] Zugadi-Reizabal, A., 2011 ‘Hausdorff dimension in groups acting on the -adic tree’, PhD Thesis, University of the Basque country Bilbao.Google Scholar

Cité par Sources :