Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_8,
     author = {YIFTACH BARNEA and JAN-CHRISTOPH SCHLAGE-PUCHTA},
     title = {BRANCH {GROUPS,} {ORBIT} {GROWTH,} {AND} {SUBGROUP} {GROWTH} {TYPES} {FOR} {PRO-}$p$ {GROUPS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.8/}
}
                      
                      
                    TY - JOUR AU - YIFTACH BARNEA AU - JAN-CHRISTOPH SCHLAGE-PUCHTA TI - BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO-$p$ GROUPS JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.8/ DO - 10.1017/fmp.2020.8 LA - en ID - 10_1017_fmp_2020_8 ER -
%0 Journal Article %A YIFTACH BARNEA %A JAN-CHRISTOPH SCHLAGE-PUCHTA %T BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO-$p$ GROUPS %J Forum of Mathematics, Pi %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.8/ %R 10.1017/fmp.2020.8 %G en %F 10_1017_fmp_2020_8
YIFTACH BARNEA; JAN-CHRISTOPH SCHLAGE-PUCHTA. BRANCH GROUPS, ORBIT GROWTH, AND SUBGROUP GROWTH TYPES FOR PRO-$p$ GROUPS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.8
[1] , and , ‘Maximal subgroups of multi-edge spinal groups’, Groups Geom. Dyn. 10 (2016), 619–648.Google Scholar | DOI
[2] and , ‘Groups of positive weighted deficiency and their applications’, J. Reine Angew. Math. 677 (2013), 71–134.Google Scholar
[3] and , ‘GGS-groups: order of congruence quotients and Hausdorff dimension’, Trans. Amer. Math. Soc. 366 (2014), 1993–2017.Google Scholar | DOI
[4] , ‘Abstract commensurability and the Gupta-Sidki group’, Groups Geom. Dyn. 10 (2016), 523–543.Google Scholar | DOI
[5] , ‘Just infinite branch groups’, inNew Horizons in pro-p Groups (eds. , and ) Birkhäuser Progress in Mathematics, 184 (Birkhäuser Verlag, Basel, 2000), 121–179.Google Scholar | DOI
[6] and , ‘A structural property concerning abstract commensurability of subgroups’, J. Lond. Math. Soc. (2) 68 (2003), 671–682.Google Scholar | DOI
[7] , 1999 ‘Substitution Groups, Subgroup Growth and Other Topics’, D.Phil. Thesis, University of Oxford.Google Scholar
[8] and , Subgroup Growth, Birkhäuser Progress in Mathematics, 212 (Birkhäuser Verlag, Basel, 2003).Google Scholar | DOI
[9] , ‘Maximal subgroups of some non locally finite p-groups’, Internat. J. Algebra Comput. 15 (2005), 1129–1150.Google Scholar | DOI
[10] , ‘Groups of intermediate subgroup growth and a problem of Grothendieck’, Duke Math. J. 121 (2004), 169–188.Google Scholar | DOI
[11] , ‘The finite images of finitely generated groups’, Proc. Lond. Math. Soc. (3) 82 (2001), 597–613.Google Scholar | DOI
[12] and , ‘Groups with fractionally exponential subgroup growth’, J. Pure Appl. Algebra 88 (1993), 205–223.Google Scholar | DOI
[13] , ‘On a 2-generated infinite 3-group: subgroups and automorphisms’, J. Algebra 110 (1987), 24–55.Google Scholar | DOI
[14] , ‘Growth functions p-adic analytic groups and groups of finite coclass’, J. Lond. Math. Soc. (2) 46 (1992), 111–122.Google Scholar | DOI
[15] , 2011 ‘Hausdorff dimension in groups acting on the -adic tree’, PhD Thesis, University of the Basque country Bilbao.Google Scholar
Cité par Sources :
