Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_7,
     author = {HONG LIU and OLEG PIKHURKO and KATHERINE STADEN},
     title = {THE {EXACT} {MINIMUM} {NUMBER} {OF} {TRIANGLES} {IN} {GRAPHS} {WITH} {GIVEN} {ORDER} {AND} {SIZE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.7/}
}
                      
                      
                    TY - JOUR AU - HONG LIU AU - OLEG PIKHURKO AU - KATHERINE STADEN TI - THE EXACT MINIMUM NUMBER OF TRIANGLES IN GRAPHS WITH GIVEN ORDER AND SIZE JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.7/ DO - 10.1017/fmp.2020.7 LA - en ID - 10_1017_fmp_2020_7 ER -
%0 Journal Article %A HONG LIU %A OLEG PIKHURKO %A KATHERINE STADEN %T THE EXACT MINIMUM NUMBER OF TRIANGLES IN GRAPHS WITH GIVEN ORDER AND SIZE %J Forum of Mathematics, Pi %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.7/ %R 10.1017/fmp.2020.7 %G en %F 10_1017_fmp_2020_7
HONG LIU; OLEG PIKHURKO; KATHERINE STADEN. THE EXACT MINIMUM NUMBER OF TRIANGLES IN GRAPHS WITH GIVEN ORDER AND SIZE. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.7
[1] , ‘On complete subgraphs of different orders’, Math. Proc. Cambridge Philos. Soc. 79 (1976), 19–24.Google Scholar | DOI
[2] , and , ‘An approximate version of Sidorenko’s conjecture’, Geom. Funct. Anal. 20 (2010), 1354–1366.Google Scholar | DOI
[3] , , and , ‘Some advances on Sidorenko’s conjecture’, J. Lond. Math. Soc. 98 (2018), 593–608.Google Scholar | DOI
[4] , ‘Note on the smallest root of the independence polynomial’, Combin. Probab. Comput. 22 (2013), 1–8.Google Scholar | DOI
[5] and , ‘Supersaturated graphs and hypergraphs’, Combinatorica 3 (1983), 181–192.Google Scholar | DOI
[6] , ‘Some theorems on graphs’, Riveon Lematematika 9 (1955), 13–17.Google Scholar
[7] , ‘On a theorem of Rademacher–Turán’, Illinois. J. Maths 6 (1962), 122–127.Google Scholar | DOI
[8] , ‘Some recent results on extremal problems in graph theory. Results’, inTheory of Graphs (Internat. Sympos., Rome, 1966) (Gordon and Breach, New York, 1967), 117–123. (English); pp 124–130 (French).Google Scholar
[9] and , ‘On the structure of linear graphs’, Bull. Amer. Math. Soc. (N.S.) 52 (1946), 1087–1091.Google Scholar | DOI
[10] , ‘Lower bounds on the number of triangles in a graph’, J. Graph Theory 13 (1989), 505–512.Google Scholar | DOI
[11] , , , , and , ‘Densities of 3-vertex graphs’, Preprint, 2016, .Google Scholar
[12] and , ‘Clique polynomials have a unique root of smallest modulus’, Inform. Process. Lett. 75 (2000), 127–132.Google Scholar | DOI
[13] , ‘On sets of acquaintances and strangers at any party’, Amer. Math. Monthly 66 (1959), 778–783.Google Scholar | DOI
[14] , ‘On the density of triangles and squares in regular finite and unimodular random graphs’, Combinatorica 33 (2013), 531–548.Google Scholar | DOI
[15] , ‘Graph norms and Sidorenko’s conjecture’, Israel J. Math. 175 (2010), 125–150.Google Scholar | DOI
[16] and , ‘Undecidability of linear inequalities in graph homomorphism densities’, J. Amer. Math. Soc. 24 (2011), 547–565.Google Scholar | DOI
[17] and , ‘On the boundary of the region defined by homomorphism densities’, J. Combin. 10 (2019), 203–219.Google Scholar
[18] , , , and , ‘On the 3-local profiles of graphs’, J. Graph Theory 76 (2014), 236–248.Google Scholar | DOI
[19] , and , ‘Supersaturation problem for the bowtie’, Eur. J. Combin. (2017), in press, doi:10.1016/j.ejc.2020.103107.Google Scholar
[20] , ‘Intersection theorems for systems of finite sets’, Acta Math. Acad. Sci. Hung. 15 (1964), 329–337.Google Scholar | DOI
[21] , , and , ‘Asymptotic structure for the clique density theorem’, Preprint, 2019, .Google Scholar
[22] , and , ‘Two approaches to Sidorenko’s conjecture’, Trans. Amer. Math. Soc. 368 (2016), 5057–5074.Google Scholar | DOI
[23] , ‘The number of simplices in a complex’, inMathematical Optimization Techniques (ed. ) (University California Press, Berkeley, 1963), 251–278.Google Scholar
[24] and , ‘On the logarithmic calculus and Sidorenko’s conjecture’, Combinatorica (2011), to appear.Google Scholar
[25] and , ‘On the number of complete subgraphs of a graph’, inProceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975) (Congressus Numerantium, No. XV, Winnipeg, Man, 1976), 431–441. Utilitas Math.Google Scholar
[26] and , ‘On the number of complete subgraphs of a graph. II’, inStudies in Pure Mathematics (Birkhäuser, Basel, 1983), 459–495.Google Scholar | DOI
[27] , ‘Problem 28’, Winkundige Opgaven 10 (1907), 60–61.Google Scholar
[28] and , ‘On a problem of Turán’, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 283–287.Google Scholar
[29] , ‘Counting substructures I: color critical graphs’, Adv. Math. 225 (2010), 2731–2740.Google Scholar | DOI
[30] , ‘The number of cliques in graphs of given order and size’, Trans. Amer. Math. Soc. 363 (2011), 1599–1618.Google Scholar | DOI
[31] , ‘On a problem of P Erdős’, Annuaire Univ. Sofia Fac. Math. Méc. 71 (1976/77), 157–160.Google Scholar
[32] and , ‘Solution of the problem of P. Erdős on the number of triangles in graphs with n vertices and [n 2/4] + l edges’, C. R. Acad. Bulgare Sci. 34 (1981), 969–970.Google Scholar
[33] and , ‘Triangles in an ordinary graph’, Canad. J. Math. 15 (1963), 33–41.Google Scholar | DOI
[34] and , ‘Asymptotic structure of graphs with the minimum number of triangles’, Combin. Probab. Comput. 26 (2017), 138–160.Google Scholar | DOI
[35] and , ‘Supersaturation problem for color-critical graphs’, J. Combin. Theory B 123 (2017), 148–185.Google Scholar | DOI
[36] , ‘Flag algebras’, J. Symb. Logic 72 (2007), 1239–1282.Google Scholar | DOI
[37] , ‘On the minimal density of triangles in graphs’, Combin. Probab. Comput. 17 (2008), 603–618.Google Scholar | DOI
[38] , ‘The clique density theorem’, Ann. of Math. (2) 184 (2016), 683–707.Google Scholar | DOI
[39] , ‘A correlation inequality for bipartite graphs’, Graphs Combin. 9 (1993), 201–204.Google Scholar | DOI
[40] , ‘A method for solving extremal problems in graph theory, stability problems’, inTheory of Graphs (Proc. Colloq., Tihany, 1966) (Academic Press, New York, 1968), 279–319.Google Scholar
[41] , ‘An information theoretic approach to Sidorenko’s conjecture’, Preprint, 2014, .Google Scholar
[42] , ‘On an extremal problem in graph theory (in Hungarian)’, Mat. Fiz. Lapok 48 (1941), 436–452.Google Scholar
Cité par Sources :
