THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

For each $t\in \mathbb{R}$, we define the entire function

$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$

where $\unicode[STIX]{x1D6F7}$ is the super-exponentially decaying function

$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$

Newman showed that there exists a finite constant $\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant) such that the zeros of $H_{t}$ are all real precisely when $t\geqslant \unicode[STIX]{x1D6EC}$. The Riemann hypothesis is equivalent to the assertion $\unicode[STIX]{x1D6EC}\leqslant 0$, and Newman conjectured the complementary bound $\unicode[STIX]{x1D6EC}\geqslant 0$. In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\unicode[STIX]{x1D6EC}0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\unicode[STIX]{x1D6EC}$, until one establishes that the zeros of $H_{0}$ are in local equilibrium, in the sense that they locally behave (on average) as if they were equally spaced in an arithmetic progression, with gaps staying close to the global average gap size. But this latter claim is inconsistent with the known results about the local distribution of zeros of the Riemann zeta function, such as the pair correlation estimates of Montgomery.
@article{10_1017_fmp_2020_6,
     author = {BRAD RODGERS and TERENCE TAO},
     title = {THE {DE} {BRUIJN{\textendash}NEWMAN} {CONSTANT} {IS} {NON-NEGATIVE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.6/}
}
TY  - JOUR
AU  - BRAD RODGERS
AU  - TERENCE TAO
TI  - THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.6/
DO  - 10.1017/fmp.2020.6
LA  - en
ID  - 10_1017_fmp_2020_6
ER  - 
%0 Journal Article
%A BRAD RODGERS
%A TERENCE TAO
%T THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.6/
%R 10.1017/fmp.2020.6
%G en
%F 10_1017_fmp_2020_6
BRAD RODGERS; TERENCE TAO. THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.6

[1] Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions (Dover, New York, 1965).Google Scholar

[2] Bourgain, J., ‘Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case’, J. Amer. Math. Soc. 12(1) (1999), 145–171.Google Scholar | DOI

[3] Broughan, K., Equivalents of the Riemann Hypothesis, Vol. 2, Analytic Equivalents, Encyclopedia of Mathematics and its Applications, 165 (Cambridge University Press, Cambridge, 2017).Google Scholar

[4] De Bruijn, N. C., ‘The roots of trigonometric integrals’, Duke J. Math. 17 (1950), 197–226.Google Scholar | DOI

[5] Chang, A., Mehrle, D., Miller, S. J., Reiter, T., Stahl, J. and Yott, D., ‘Newman’s conjecture in function fields’, J. Number Theory 157 (2015), 154–169.Google Scholar | DOI

[6] Conrey, J. B., Ghosh, A., Goldston, D., Gonek, S. M. and Heath-Brown, D. R., ‘On the distribution of gaps between zeros of the zeta-function’, Q. J. Math. 36 (1985), 43–51.Google Scholar | DOI

[7] Conrey, J. B., Ghosh, A. and Gonek, S. M., ‘A note on gaps between zeros of the zeta function’, Bull. Lond. Math. Soc. 16(4) (1984), 421–424.Google Scholar | DOI

[8] Csordas, G., Norfolk, T. S. and Varga, R. S., ‘A lower bound for the de Bruijn–Newman constant 𝛬’, Numer. Math. 52 (1988), 483–497.Google Scholar | DOI

[9] Csordas, G., Odlyzko, A. M., Smith, W. and Varga, R. S., ‘A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda’, Electron. Trans. Numer. Anal. 1 (1993), 104–111.Google Scholar

[10] Csordas, G., Ruttan, A. and Varga, R. S., ‘The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis’, Numer. Algorithms 1 (1991), 305–329.Google Scholar | DOI

[11] Csordas, G., Smith, W. and Varga, R. S., ‘Lehmer pairs of zeros, the de Bruijn–Newman constant 𝛬, and the Riemann hypothesis’, Constr. Approx. 10(1) (1994), 107–129.Google Scholar | DOI

[12] Erdős, L., Schlein, B. and Yau, H.-T., ‘Universality of random matrices and local relaxation flow’, Invent. Math. 185(1) (2011), 75–119.Google Scholar | DOI

[13] Ki, H., Kim, Y. O. and Lee, J., ‘On the de Bruijn–Newman constant’, Adv. Math. 22 (2009), 281–306.Google Scholar | DOI

[14] Lehmer, D. H., ‘On the roots of the Riemann zeta-function’, Acta Math. 95 (1956), 291–298.Google Scholar | DOI

[15] Montgomery, H. L., ‘The pair correlation of zeros of the zeta function’, inAnalytic Number Theory (Proceedings of Symposia in Pure Mathematics, Vol. XXIV, St. Louis Univ., St. Louis, MO, 1972) (American Mathematical Society, Providence, RI, 1973), 181–193.Google Scholar

[16] Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory. I. Classical Theory, Cambridge Studies in Advanced Mathematics, 97 (Cambridge University Press, Cambridge, 2007).Google Scholar

[17] Newman, C. M., ‘Fourier transforms with only real zeroes’, Proc. Amer. Math. Soc. 61 (1976), 246–251.Google Scholar

[18] Norfolk, T. S., Ruttan, A. and Varga, R. S., A Lower Bound for the de Bruijn–Newman Constant 𝛬 II, (eds. Gonchar, A. A. and Saff, E. B.) Progress in Approximation Theory (Springer, New York, 1992), 403–418.Google Scholar

[19] Odlyzko, A. M., ‘An improved bound for the de Bruijn–Newman constant’, Numer. Algorithms 25 (2000), 293–303.Google Scholar | DOI

[20] Pólya, G., ‘Über trigonometrische Integrale mit nur reelen Nullstellen’, J. Reine Angew. Math. 58 (1927), 6–18.Google Scholar

[21] Polymath, D. H. J., ‘Effective approximation of heat flow evolution of the Riemann 𝜉 function, and a new upper bound for the de Bruijn–Newman constant’, Res. Math. Sci. 6 (2019), 3, Paper No. 31, 67 pp.Google Scholar | DOI

[22] Te Riele, H. J. J., ‘A new lower bound for the de Bruijn–Newman constant’, Numer. Math. 58 (1991), 661–667.Google Scholar | DOI

[23] Saouter, Y., Gourdon, X. and Demichel, P., ‘An improved lower bound for the de Bruijn–Newman constant’, Math. Comp. 80 (2011), 2281–2287.Google Scholar | DOI

[24] Stein, E. M. and Shakarchi, R., Complex Analysis, Vol. 2 (Princeton University Press, Princeton, NJ, 2010).Google Scholar

[25] Stopple, J., ‘Notes on Low discriminants the generalized Newman conjecture’, Funct. Approx. Comment. Math. 51(1) (2014), 23–41.Google Scholar | DOI

[26] Stopple, J., ‘Lehmer pairs revisited’, Exp. Math. 26(1) (2017), 45–53.Google Scholar | DOI

[27] Tao, T., Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106 (American Mathematical Society, Providence, RI, 2006), Published for the Conference Board of the Mathematical Sciences, Washington, DC.Google Scholar | DOI

[28] Tao, T. and Vu, V. H., Additive Combinatorics, Vol. 105 (Cambridge University Press, Cambridge, 2006).Google Scholar | DOI

[29] Titchmarsh, E. C., The Theory of the Riemann Zeta-function, 2nd edn (Oxford University Press, Oxford, 1986), (revised by D. R. Heath-Brown).Google Scholar

Cité par Sources :