Voir la notice de l'article provenant de la source Cambridge University Press
| $\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$ | 
| $\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$ | 
@article{10_1017_fmp_2020_6,
     author = {BRAD RODGERS and TERENCE TAO},
     title = {THE {DE} {BRUIJN{\textendash}NEWMAN} {CONSTANT} {IS} {NON-NEGATIVE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.6/}
}
                      
                      
                    BRAD RODGERS; TERENCE TAO. THE DE BRUIJN–NEWMAN CONSTANT IS NON-NEGATIVE. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.6
[1] and , Handbook of Mathematical Functions (Dover, New York, 1965).Google Scholar
[2] , ‘Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case’, J. Amer. Math. Soc. 12(1) (1999), 145–171.Google Scholar | DOI
[3] , Equivalents of the Riemann Hypothesis, Vol. 2, Analytic Equivalents, Encyclopedia of Mathematics and its Applications, 165 (Cambridge University Press, Cambridge, 2017).Google Scholar
[4] , ‘The roots of trigonometric integrals’, Duke J. Math. 17 (1950), 197–226.Google Scholar | DOI
[5] , , , , and , ‘Newman’s conjecture in function fields’, J. Number Theory 157 (2015), 154–169.Google Scholar | DOI
[6] , , , and , ‘On the distribution of gaps between zeros of the zeta-function’, Q. J. Math. 36 (1985), 43–51.Google Scholar | DOI
[7] , and , ‘A note on gaps between zeros of the zeta function’, Bull. Lond. Math. Soc. 16(4) (1984), 421–424.Google Scholar | DOI
[8] , and , ‘A lower bound for the de Bruijn–Newman constant 𝛬’, Numer. Math. 52 (1988), 483–497.Google Scholar | DOI
[9] , , and , ‘A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda’, Electron. Trans. Numer. Anal. 1 (1993), 104–111.Google Scholar
[10] , and , ‘The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis’, Numer. Algorithms 1 (1991), 305–329.Google Scholar | DOI
[11] , and , ‘Lehmer pairs of zeros, the de Bruijn–Newman constant 𝛬, and the Riemann hypothesis’, Constr. Approx. 10(1) (1994), 107–129.Google Scholar | DOI
[12] , and , ‘Universality of random matrices and local relaxation flow’, Invent. Math. 185(1) (2011), 75–119.Google Scholar | DOI
[13] , and , ‘On the de Bruijn–Newman constant’, Adv. Math. 22 (2009), 281–306.Google Scholar | DOI
[14] , ‘On the roots of the Riemann zeta-function’, Acta Math. 95 (1956), 291–298.Google Scholar | DOI
[15] , ‘The pair correlation of zeros of the zeta function’, inAnalytic Number Theory (Proceedings of Symposia in Pure Mathematics, Vol. XXIV, St. Louis Univ., St. Louis, MO, 1972) (American Mathematical Society, Providence, RI, 1973), 181–193.Google Scholar
[16] and , Multiplicative Number Theory. I. Classical Theory, Cambridge Studies in Advanced Mathematics, 97 (Cambridge University Press, Cambridge, 2007).Google Scholar
[17] , ‘Fourier transforms with only real zeroes’, Proc. Amer. Math. Soc. 61 (1976), 246–251.Google Scholar
[18] , and , A Lower Bound for the de Bruijn–Newman Constant 𝛬 II, (eds. and ) Progress in Approximation Theory (Springer, New York, 1992), 403–418.Google Scholar
[19] , ‘An improved bound for the de Bruijn–Newman constant’, Numer. Algorithms 25 (2000), 293–303.Google Scholar | DOI
[20] , ‘Über trigonometrische Integrale mit nur reelen Nullstellen’, J. Reine Angew. Math. 58 (1927), 6–18.Google Scholar
[21] , ‘Effective approximation of heat flow evolution of the Riemann 𝜉 function, and a new upper bound for the de Bruijn–Newman constant’, Res. Math. Sci. 6 (2019), 3, Paper No. 31, 67 pp.Google Scholar | DOI
[22] , ‘A new lower bound for the de Bruijn–Newman constant’, Numer. Math. 58 (1991), 661–667.Google Scholar | DOI
[23] , and , ‘An improved lower bound for the de Bruijn–Newman constant’, Math. Comp. 80 (2011), 2281–2287.Google Scholar | DOI
[24] and , Complex Analysis, Vol. 2 (Princeton University Press, Princeton, NJ, 2010).Google Scholar
[25] , ‘Notes on Low discriminants the generalized Newman conjecture’, Funct. Approx. Comment. Math. 51(1) (2014), 23–41.Google Scholar | DOI
[26] , ‘Lehmer pairs revisited’, Exp. Math. 26(1) (2017), 45–53.Google Scholar | DOI
[27] , Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106 (American Mathematical Society, Providence, RI, 2006), Published for the Conference Board of the Mathematical Sciences, Washington, DC.Google Scholar | DOI
[28] and , Additive Combinatorics, Vol. 105 (Cambridge University Press, Cambridge, 2006).Google Scholar | DOI
[29] , The Theory of the Riemann Zeta-function, 2nd edn (Oxford University Press, Oxford, 1986), (revised by D. R. Heath-Brown).Google Scholar
Cité par Sources :
