Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_4,
     author = {ELLEN EISCHEN and MICHAEL HARRIS and JIANSHU LI and CHRISTOPHER SKINNER},
     title = {$p${-ADIC} $L${-FUNCTIONS} {FOR} {UNITARY} {GROUPS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.4/}
}
                      
                      
                    TY - JOUR AU - ELLEN EISCHEN AU - MICHAEL HARRIS AU - JIANSHU LI AU - CHRISTOPHER SKINNER TI - $p$-ADIC $L$-FUNCTIONS FOR UNITARY GROUPS JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.4/ DO - 10.1017/fmp.2020.4 LA - en ID - 10_1017_fmp_2020_4 ER -
ELLEN EISCHEN; MICHAEL HARRIS; JIANSHU LI; CHRISTOPHER SKINNER. $p$-ADIC $L$-FUNCTIONS FOR UNITARY GROUPS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.4
[BHR94] , and , ‘Coherent cohomology, limits of discrete series, and Galois conjugation’, Duke Math. J. 73(3) (1994), 647–685.Google Scholar | DOI
[CEF+16] , , , and , ‘p-adic q-expansion principles on unitary shimura varieties’, inDirections in Number Theory, Vol. 3 (Springer, Cham, 2016), 197–243.Google Scholar | DOI
[Cas95] , ‘Introduction to the theory of admissible representations of -adic reductive groups’, Unpublished manuscript, 1995, .Google Scholar
[CCO14] , and , Complex Multiplication and Lifting Problems, Mathematical Surveys and Monographs, 195 (American Mathematical Society, Providence, RI, 2014).Google Scholar
[Che04] , ‘Familles p-adiques de formes automorphes pour GL’, J. Reine Angew. Math. 570 (2004), 143–217.Google Scholar
[CHT08] , and , ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.Google Scholar | DOI
[Coa89] , ‘On p-adic L-functions attached to motives over . II’, Bol. Soc. Brasil. Mat. (N.S.) 20(1) (1989), 101–112.Google Scholar | DOI
[CPR89] and , ‘On p-adic L-functions attached to motives over ’, inAlgebraic Number Theory, Advanced Studies in Pure Mathematics, 17 (Academic Press, Boston, MA, 1989), 23–54.Google Scholar
[Del79] , ‘Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques’, inAutomorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 247–289.Google Scholar
[EFMV18] , , and , ‘Differential operators and families of automorphic forms on unitary groups of arbitrary signature’, Doc. Math. 23 (2018), 445–495.Google Scholar
[Eis12] , ‘p-adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble) 62(1) (2012), 177–243.Google Scholar | DOI
[Eis14] , ‘A p-adic Eisenstein measure for vector-weight automorphic forms’, Algebra Number Theory 8(10) (2014), 2433–2469.Google Scholar | DOI
[Eis15] , ‘A p-adic Eisenstein measure for unitary groups’, J. Reine Angew. Math. 699 (2015), 111–142.Google Scholar
[Eis16] , ‘Differential operators, pullbacks, and families of automorphic forms on unitary groups’, Ann. Math. Qué. 40(1) (2016), 55–82.Google Scholar | DOI
[EM19] and , ‘p-adic families of automorphic forms in the 𝜇-ordinary setting’, Amer. J. Math. (2019), Accepted for publication.Google Scholar
[Gar84] , ‘Pullbacks of Eisenstein series; applications’, inAutomorphic Forms of Several Variables (Katata, 1983), Progress in Mathematics, 46 (Birkhäuser Boston, Boston, MA, 1984), 114–137.Google Scholar
[Gar08] , ‘Values of Archimedean zeta integrals for unitary groups’, inEisenstein Series and Applications, Progress in Mathematics, 258 (Birkhäuser, Boston, Boston, MA, 2008), 125–148.Google Scholar | DOI
[GPSR87] , and , Explicit Constructions of Automorphic L-functions, Lecture Notes in Mathematics, 1254 (Springer, Berlin, 1987).Google Scholar | DOI
[GW09] and , Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, 255 (Springer, Dordrecht, 2009).Google Scholar | DOI
[Har86] , ‘Arithmetic vector bundles and automorphic forms on Shimura varieties. II’, Compositio Math. 60(3) (1986), 323–378.Google Scholar
[Har89] , ‘Functorial properties of toroidal compactifications of locally symmetric varieties’, Proc. Lond. Math. Soc. (3) 59(1) (1989), 1–22.Google Scholar | DOI
[Har90] , ‘Automorphic forms of ∂ -cohomology type as coherent cohomology classes’, J. Differential Geom. 32(1) (1990), 1–63.Google Scholar | DOI
[Har97] , ‘L-functions and periods of polarized regular motives’, J. Reine Angew. Math. 483 (1997), 75–161.Google Scholar
[Har08] , ‘A simple proof of rationality of Siegel–Weil Eisenstein series’, inEisenstein Series and Applications, Progress in Mathematics, 258 (Birkhäuser, Boston, MA, 2008), 149–185.Google Scholar | DOI
[Har13a] , ‘Beilinson–Bernstein localization over ℚ and periods of automorphic forms’, Int. Math. Res. Not. IMRN 9 (2013), 2000–2053.Google Scholar | DOI
[Har13b] , ‘The Taylor–Wiles method for coherent cohomology’, J. Reine Angew. Math. 679 (2013), 125–153.Google Scholar | DOI
[HKS96] , and , ‘Theta dichotomy for unitary groups’, J. Amer. Math. Soc. 9(4) (1996), 941–1004.Google Scholar | DOI
[HLS05] , and , ‘The Rallis inner product formula and p-adic L-functions’, inAutomorphic Representations, L-functions and Applications: Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ., 11 (de Gruyter, Berlin, 2005), 225–255.Google Scholar
[HLS06] , and , ‘p-adic L-functions for unitary Shimura varieties. I. Construction of the Eisenstein Measure’, Doc. Math. Extra Vol. (2006), 393–464 (electronic).Google Scholar
[Hid88] , ‘A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II’, Ann. Inst. Fourier (Grenoble) 38(3) (1988), 1–83.Google Scholar | DOI
[Hid96] , ‘On the search of genuine p-adic modular L-functions for GL(n)’, Mém. Soc. Math. Fr. (N.S.) 67 (1996), vi+110, With a correction to: ‘On -adic -functions of over totally real fields’ Ann. Inst. Fourier (Grenoble) (2) (1991), 311–391.Google Scholar
[Hid98] , ‘Automorphic induction and Leopoldt type conjectures for GL(n)’, Asian J. Math. 2(4) (1998), 667–710. Mikio Sato: a great Japanese mathematician of the twentieth century.Google Scholar | DOI
[Hid02] , ‘Control theorems of coherent sheaves on Shimura varieties of PEL type’, J. Inst. Math. Jussieu 1(1) (2002), 1–76.Google Scholar | DOI
[Hid04] , p-adic Automorphic Forms on Shimura Varieties, Springer Monographs in Mathematics (Springer, New York, 2004).Google Scholar | DOI
[Jac79] , ‘Principal L-functions of the linear group’, inAutomorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Applied Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 63–86.Google Scholar
[KMSW14] , , and , ‘Endoscopic classification of representations: Inner forms of unitary groups’, Preprint, 2014,.Google Scholar
[Kat78] , ‘p-adic L-functions for CM fields’, Invent. Math. 49(3) (1978), 199–297.Google Scholar | DOI
[Kot92] , ‘Points on some Shimura varieties over finite fields’, J. Amer. Math. Soc. 5(2) (1992), 373–444.Google Scholar | DOI
[Lab11] , ‘Changement de base CM et séries discrètes’, inOn the Stabilization of the Trace Formula, Stab. Trace Formula Shimura Var. Arith. Appl., 1 (Int. Press, Somerville, MA, 2011), 429–470.Google Scholar
[Lan12] , ‘Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type Shimura varieties’, J. Reine Angew. Math. 664 (2012), 163–228.Google Scholar
[Lan13] , Arithmetic Compactifications of PEL-type Shimura Varieties, London Mathematical Society Monographs, 36 (Princeton University Press, Princeton, NJ, 2013).Google Scholar
[Lan16] , ‘Higher Koecher’s principle’, Math. Res. Lett. 23(1) (2016), 163–199.Google Scholar | DOI
[Lan17] , ‘Integral models of toroidal compactifications with projective cone decompositions’, Int. Math. Res. Not. IMRN 11 (2017), 3237–3280.Google Scholar
[Lan18] , Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci, (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018).Google Scholar
[LS13] and , ‘Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties’, Adv. Math. 242 (2013), 228–286.Google Scholar | DOI
[Li92] , ‘Nonvanishing theorems for the cohomology of certain arithmetic quotients’, J. Reine Angew. Math. 428 (1992), 177–217.Google Scholar
[Liu19a] , ‘The doubling Archimedean zeta integrals for p-adic interpolation’, Math. Res. Lett. (2019), Accepted for publication. Preprint available at .Google Scholar
[Liu19b] , ‘p-adic L-functions for ordinary families on symplectic groups’, J. Inst. Math. Jussieu (2019), 1–61.Google Scholar
[MVW87] , and , Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, 1291 (Springer, Berlin, 1987).Google Scholar | DOI
[Mok15] , ‘Endoscopic classification of representations of quasi-split unitary groups’, Mem. Amer. Math. Soc. 235(1108) (2015), vi+248.Google Scholar
[Moo04] , ‘Serre–Tate theory for moduli spaces of PEL type’, Ann. Sci. Éc. Norm. Supér. (4) 37(2) (2004), 223–269.Google Scholar | DOI
[Pan94] , ‘Motives over totally real fields and p-adic L-functions’, Ann. Inst. Fourier (Grenoble) 44(4) (1994), 989–1023.Google Scholar | DOI
[Pil11] , ‘Prolongement analytique sur les variétés de Siegel’, Duke Math. J. 157(1) (2011), 167–222.Google Scholar | DOI
[Shi97] , Euler Products and Eisenstein Series, CBMS Regional Conference Series in Mathematics, 93 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997).Google Scholar | DOI
[Shi00] , Arithmeticity in the Theory of Automorphic Forms, Mathematical Surveys and Monographs, 82 (American Mathematical Society, Providence, RI, 2000).Google Scholar
[SU02] and , ‘Sur les déformations p-adiques des formes de Saito–Kurokawa’, C. R. Math. Acad. Sci. Paris 335(7) (2002), 581–586.Google Scholar | DOI
[SU14] and , ‘The Iwasawa main conjectures for GL’, Invent. Math. 195(1) (2014), 1–277.Google Scholar | DOI
[Wan15] , ‘Families of nearly ordinary Eisenstein series on unitary groups’, Algebra Number Theory 9(9) (2015), 1955–2054. With an appendix by Kai-Wen Lan.Google Scholar | DOI
[Wed99] , ‘Ordinariness in good reductions of Shimura varieties of PEL-type’, Ann. Sci. Éc. Norm. Supér. (4) 32(5) (1999), 575–618.Google Scholar | DOI
Cité par Sources :
