$p$-ADIC $L$-FUNCTIONS FOR UNITARY GROUPS
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

This paper completes the construction of $p$-adic $L$-functions for unitary groups. More precisely, in Harris, Li and Skinner [‘$p$-adic $L$-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure’, Doc. Math.Extra Vol. (2006), 393–464 (electronic)], three of the authors proposed an approach to constructing such $p$-adic $L$-functions (Part I). Building on more recent results, including the first named author’s construction of Eisenstein measures and $p$-adic differential operators [Eischen, ‘A $p$-adic Eisenstein measure for unitary groups’, J. Reine Angew. Math.699 (2015), 111–142; ‘$p$-adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble)62(1) (2012), 177–243], Part II of the present paper provides the calculations of local $\unicode[STIX]{x1D701}$-integrals occurring in the Euler product (including at $p$). Part III of the present paper develops the formalism needed to pair Eisenstein measures with Hida families in the setting of the doubling method.
@article{10_1017_fmp_2020_4,
     author = {ELLEN EISCHEN and MICHAEL HARRIS and JIANSHU LI and CHRISTOPHER SKINNER},
     title = {$p${-ADIC} $L${-FUNCTIONS} {FOR} {UNITARY} {GROUPS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.4/}
}
TY  - JOUR
AU  - ELLEN EISCHEN
AU  - MICHAEL HARRIS
AU  - JIANSHU LI
AU  - CHRISTOPHER SKINNER
TI  - $p$-ADIC $L$-FUNCTIONS FOR UNITARY GROUPS
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.4/
DO  - 10.1017/fmp.2020.4
LA  - en
ID  - 10_1017_fmp_2020_4
ER  - 
%0 Journal Article
%A ELLEN EISCHEN
%A MICHAEL HARRIS
%A JIANSHU LI
%A CHRISTOPHER SKINNER
%T $p$-ADIC $L$-FUNCTIONS FOR UNITARY GROUPS
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.4/
%R 10.1017/fmp.2020.4
%G en
%F 10_1017_fmp_2020_4
ELLEN EISCHEN; MICHAEL HARRIS; JIANSHU LI; CHRISTOPHER SKINNER. $p$-ADIC $L$-FUNCTIONS FOR UNITARY GROUPS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.4

[BHR94] Blasius, D., Harris, M. and Ramakrishnan, D., ‘Coherent cohomology, limits of discrete series, and Galois conjugation’, Duke Math. J. 73(3) (1994), 647–685.Google Scholar | DOI

[CEF+16] Caraiani, A., Eischen, E., Fintzen, J., Mantovan, E. and Varma, I., ‘p-adic q-expansion principles on unitary shimura varieties’, inDirections in Number Theory, Vol. 3 (Springer, Cham, 2016), 197–243.Google Scholar | DOI

[Cas95] Casselman, W., ‘Introduction to the theory of admissible representations of -adic reductive groups’, Unpublished manuscript, 1995, .Google Scholar

[CCO14] Chai, C.-L., Conrad, B. and Oort, F., Complex Multiplication and Lifting Problems, Mathematical Surveys and Monographs, 195 (American Mathematical Society, Providence, RI, 2014).Google Scholar

[Che04] Chenevier, G., ‘Familles p-adiques de formes automorphes pour GL’, J. Reine Angew. Math. 570 (2004), 143–217.Google Scholar

[CHT08] Clozel, L., Harris, M. and Taylor, R., ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.Google Scholar | DOI

[Coa89] Coates, J., ‘On p-adic L-functions attached to motives over . II’, Bol. Soc. Brasil. Mat. (N.S.) 20(1) (1989), 101–112.Google Scholar | DOI

[CPR89] Coates, J. and Perrin-Riou, B., ‘On p-adic L-functions attached to motives over ’, inAlgebraic Number Theory, Advanced Studies in Pure Mathematics, 17 (Academic Press, Boston, MA, 1989), 23–54.Google Scholar

[Del79] Deligne, P., ‘Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques’, inAutomorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 247–289.Google Scholar

[EFMV18] Eischen, E., Fintzen, J., Mantovan, E. and Varma, I., ‘Differential operators and families of automorphic forms on unitary groups of arbitrary signature’, Doc. Math. 23 (2018), 445–495.Google Scholar

[Eis12] Eischen, E. E., ‘p-adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble) 62(1) (2012), 177–243.Google Scholar | DOI

[Eis14] Eischen, E., ‘A p-adic Eisenstein measure for vector-weight automorphic forms’, Algebra Number Theory 8(10) (2014), 2433–2469.Google Scholar | DOI

[Eis15] Eischen, E. E., ‘A p-adic Eisenstein measure for unitary groups’, J. Reine Angew. Math. 699 (2015), 111–142.Google Scholar

[Eis16] Eischen, E. E., ‘Differential operators, pullbacks, and families of automorphic forms on unitary groups’, Ann. Math. Qué. 40(1) (2016), 55–82.Google Scholar | DOI

[EM19] Eischen, E. and Mantovan, E., ‘p-adic families of automorphic forms in the 𝜇-ordinary setting’, Amer. J. Math. (2019), Accepted for publication.Google Scholar

[Gar84] Garrett, P. B., ‘Pullbacks of Eisenstein series; applications’, inAutomorphic Forms of Several Variables (Katata, 1983), Progress in Mathematics, 46 (Birkhäuser Boston, Boston, MA, 1984), 114–137.Google Scholar

[Gar08] Garrett, P., ‘Values of Archimedean zeta integrals for unitary groups’, inEisenstein Series and Applications, Progress in Mathematics, 258 (Birkhäuser, Boston, Boston, MA, 2008), 125–148.Google Scholar | DOI

[GPSR87] Gelbart, S., Piatetski-Shapiro, I. and Rallis, S., Explicit Constructions of Automorphic L-functions, Lecture Notes in Mathematics, 1254 (Springer, Berlin, 1987).Google Scholar | DOI

[GW09] Goodman, R. and Wallach, N. R., Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, 255 (Springer, Dordrecht, 2009).Google Scholar | DOI

[Har86] Harris, M., ‘Arithmetic vector bundles and automorphic forms on Shimura varieties. II’, Compositio Math. 60(3) (1986), 323–378.Google Scholar

[Har89] Harris, M., ‘Functorial properties of toroidal compactifications of locally symmetric varieties’, Proc. Lond. Math. Soc. (3) 59(1) (1989), 1–22.Google Scholar | DOI

[Har90] Harris, M., ‘Automorphic forms of ∂ -cohomology type as coherent cohomology classes’, J. Differential Geom. 32(1) (1990), 1–63.Google Scholar | DOI

[Har97] Harris, M., ‘L-functions and periods of polarized regular motives’, J. Reine Angew. Math. 483 (1997), 75–161.Google Scholar

[Har08] Harris, M., ‘A simple proof of rationality of Siegel–Weil Eisenstein series’, inEisenstein Series and Applications, Progress in Mathematics, 258 (Birkhäuser, Boston, MA, 2008), 149–185.Google Scholar | DOI

[Har13a] Harris, M., ‘Beilinson–Bernstein localization over ℚ and periods of automorphic forms’, Int. Math. Res. Not. IMRN 9 (2013), 2000–2053.Google Scholar | DOI

[Har13b] Harris, M., ‘The Taylor–Wiles method for coherent cohomology’, J. Reine Angew. Math. 679 (2013), 125–153.Google Scholar | DOI

[HKS96] Harris, M., Kudla, S. S. and Sweet, W. J., ‘Theta dichotomy for unitary groups’, J. Amer. Math. Soc. 9(4) (1996), 941–1004.Google Scholar | DOI

[HLS05] Harris, M., Li, J.-S. and Skinner, C. M., ‘The Rallis inner product formula and p-adic L-functions’, inAutomorphic Representations, L-functions and Applications: Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ., 11 (de Gruyter, Berlin, 2005), 225–255.Google Scholar

[HLS06] Harris, M., Li, J.-S. and Skinner, C. M., ‘p-adic L-functions for unitary Shimura varieties. I. Construction of the Eisenstein Measure’, Doc. Math. Extra Vol. (2006), 393–464 (electronic).Google Scholar

[Hid88] Hida, H., ‘A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II’, Ann. Inst. Fourier (Grenoble) 38(3) (1988), 1–83.Google Scholar | DOI

[Hid96] Hida, H., ‘On the search of genuine p-adic modular L-functions for GL(n)’, Mém. Soc. Math. Fr. (N.S.) 67 (1996), vi+110, With a correction to: ‘On -adic -functions of over totally real fields’ Ann. Inst. Fourier (Grenoble) (2) (1991), 311–391.Google Scholar

[Hid98] Hida, H., ‘Automorphic induction and Leopoldt type conjectures for GL(n)’, Asian J. Math. 2(4) (1998), 667–710. Mikio Sato: a great Japanese mathematician of the twentieth century.Google Scholar | DOI

[Hid02] Hida, H., ‘Control theorems of coherent sheaves on Shimura varieties of PEL type’, J. Inst. Math. Jussieu 1(1) (2002), 1–76.Google Scholar | DOI

[Hid04] Hida, H., p-adic Automorphic Forms on Shimura Varieties, Springer Monographs in Mathematics (Springer, New York, 2004).Google Scholar | DOI

[Jac79] Jacquet, H., ‘Principal L-functions of the linear group’, inAutomorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Applied Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 63–86.Google Scholar

[KMSW14] Kaletha, T., Minguez, A., Shin, S. W. and White, P.-J., ‘Endoscopic classification of representations: Inner forms of unitary groups’, Preprint, 2014,.Google Scholar

[Kat78] Katz, N. M., ‘p-adic L-functions for CM fields’, Invent. Math. 49(3) (1978), 199–297.Google Scholar | DOI

[Kot92] Kottwitz, R. E., ‘Points on some Shimura varieties over finite fields’, J. Amer. Math. Soc. 5(2) (1992), 373–444.Google Scholar | DOI

[Lab11] Labesse, J.-P., ‘Changement de base CM et séries discrètes’, inOn the Stabilization of the Trace Formula, Stab. Trace Formula Shimura Var. Arith. Appl., 1 (Int. Press, Somerville, MA, 2011), 429–470.Google Scholar

[Lan12] Lan, K.-W., ‘Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type Shimura varieties’, J. Reine Angew. Math. 664 (2012), 163–228.Google Scholar

[Lan13] Lan, K.-W., Arithmetic Compactifications of PEL-type Shimura Varieties, London Mathematical Society Monographs, 36 (Princeton University Press, Princeton, NJ, 2013).Google Scholar

[Lan16] Lan, K.-W., ‘Higher Koecher’s principle’, Math. Res. Lett. 23(1) (2016), 163–199.Google Scholar | DOI

[Lan17] Lan, K.-W., ‘Integral models of toroidal compactifications with projective cone decompositions’, Int. Math. Res. Not. IMRN 11 (2017), 3237–3280.Google Scholar

[Lan18] Lan, K.-W., Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci, (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018).Google Scholar

[LS13] Lan, K.-W. and Suh, J., ‘Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties’, Adv. Math. 242 (2013), 228–286.Google Scholar | DOI

[Li92] Li, J.-S., ‘Nonvanishing theorems for the cohomology of certain arithmetic quotients’, J. Reine Angew. Math. 428 (1992), 177–217.Google Scholar

[Liu19a] Liu, Z., ‘The doubling Archimedean zeta integrals for p-adic interpolation’, Math. Res. Lett. (2019), Accepted for publication. Preprint available at .Google Scholar

[Liu19b] Liu, Z., ‘p-adic L-functions for ordinary families on symplectic groups’, J. Inst. Math. Jussieu (2019), 1–61.Google Scholar

[MVW87] Mœglin, C., Vignéras, M.-F. and Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, 1291 (Springer, Berlin, 1987).Google Scholar | DOI

[Mok15] Mok, C. P., ‘Endoscopic classification of representations of quasi-split unitary groups’, Mem. Amer. Math. Soc. 235(1108) (2015), vi+248.Google Scholar

[Moo04] Moonen, B., ‘Serre–Tate theory for moduli spaces of PEL type’, Ann. Sci. Éc. Norm. Supér. (4) 37(2) (2004), 223–269.Google Scholar | DOI

[Pan94] Panchishkin, A. A., ‘Motives over totally real fields and p-adic L-functions’, Ann. Inst. Fourier (Grenoble) 44(4) (1994), 989–1023.Google Scholar | DOI

[Pil11] Pilloni, V., ‘Prolongement analytique sur les variétés de Siegel’, Duke Math. J. 157(1) (2011), 167–222.Google Scholar | DOI

[Shi97] Shimura, G., Euler Products and Eisenstein Series, CBMS Regional Conference Series in Mathematics, 93 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997).Google Scholar | DOI

[Shi00] Shimura, G., Arithmeticity in the Theory of Automorphic Forms, Mathematical Surveys and Monographs, 82 (American Mathematical Society, Providence, RI, 2000).Google Scholar

[SU02] Skinner, C. and Urban, E., ‘Sur les déformations p-adiques des formes de Saito–Kurokawa’, C. R. Math. Acad. Sci. Paris 335(7) (2002), 581–586.Google Scholar | DOI

[SU14] Skinner, C. and Urban, E., ‘The Iwasawa main conjectures for GL’, Invent. Math. 195(1) (2014), 1–277.Google Scholar | DOI

[Wan15] Wan, X., ‘Families of nearly ordinary Eisenstein series on unitary groups’, Algebra Number Theory 9(9) (2015), 1955–2054. With an appendix by Kai-Wen Lan.Google Scholar | DOI

[Wed99] Wedhorn, T., ‘Ordinariness in good reductions of Shimura varieties of PEL-type’, Ann. Sci. Éc. Norm. Supér. (4) 32(5) (1999), 575–618.Google Scholar | DOI

Cité par Sources :