HALF-SPACE MACDONALD PROCESSES
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Macdonald processes are measures on sequences of integer partitions built using the Cauchy summation identity for Macdonald symmetric functions. These measures are a useful tool to uncover the integrability of many probabilistic systems, including the Kardar–Parisi–Zhang (KPZ) equation and a number of other models in its universality class. In this paper, we develop the structural theory behind half-space variants of these models and the corresponding half-space Macdonald processes. These processes are built using a Littlewood summation identity instead of the Cauchy identity, and their analysis is considerably harder than their full-space counterparts.We compute moments and Laplace transforms of observables for general half-space Macdonald measures. Introducing new dynamics preserving this class of measures, we relate them to various stochastic processes, in particular the log-gamma polymer in a half-quadrant (they are also related to the stochastic six-vertex model in a half-quadrant and the half-space ASEP). For the polymer model, we provide explicit integral formulas for the Laplace transform of the partition function. Nonrigorous saddle-point asymptotics yield convergence of the directed polymer free energy to either the Tracy–Widom (associated to the Gaussian orthogonal or symplectic ensemble) or the Gaussian distribution depending on the average size of weights on the boundary.
@article{10_1017_fmp_2020_3,
     author = {GUILLAUME BARRAQUAND and ALEXEI BORODIN and IVAN CORWIN},
     title = {HALF-SPACE {MACDONALD} {PROCESSES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.3/}
}
TY  - JOUR
AU  - GUILLAUME BARRAQUAND
AU  - ALEXEI BORODIN
AU  - IVAN CORWIN
TI  - HALF-SPACE MACDONALD PROCESSES
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.3/
DO  - 10.1017/fmp.2020.3
LA  - en
ID  - 10_1017_fmp_2020_3
ER  - 
%0 Journal Article
%A GUILLAUME BARRAQUAND
%A ALEXEI BORODIN
%A IVAN CORWIN
%T HALF-SPACE MACDONALD PROCESSES
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.3/
%R 10.1017/fmp.2020.3
%G en
%F 10_1017_fmp_2020_3
GUILLAUME BARRAQUAND; ALEXEI BORODIN; IVAN CORWIN. HALF-SPACE MACDONALD PROCESSES. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.3

[Agg18] Aggarwal, A., ‘Dynamical stochastic higher spin vertex models’, Selecta Math. (N.S.) 24(3) (2018), 2659–2735.Google Scholar | DOI

[AB19] Aggarwal, A. and Borodin, A., ‘Phase transitions in the ASEP and stochastic six-vertex model’, Ann. Probab. 47(2) (2019), 613–689.Google Scholar | DOI

[AKQ14] Alberts, T., Khanin, K. and Quastel, J., ‘The intermediate disorder regime for directed polymers in dimension 1 + 1’, Ann. Probab. 42(3) (2014), 1212–1256.Google Scholar | DOI

[ACQ11] Amir, G., Corwin, I. and Quastel, J., ‘Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions’, Comm. Pure Appl. Math. 64(4) (2011), 466–537.Google Scholar | DOI

[AAR99] Andrews, G. E., Askey, R. and Roy, R., Special Functions, (Cambridge University Press, Cambridge, 1999).Google Scholar | DOI

[BBCS18a] Baik, J., Barraquand, G., Corwin, I. and Suidan, T., ‘Facilitated exclusion process’, inThe Abel Symposium: Computation and Combinatorics in Dynamics, Stochastics and Control (Springer International Publishing, 2018), 1–35.Google Scholar

[BBCS18b] Baik, J., Barraquand, G., Corwin, I. and Suidan, T., ‘Pfaffian schur processes and last passage percolation in a half-quadrant’, Ann. Probab. 46(6) (2018), 3015–3089.Google Scholar | DOI

[BR01a] Baik, J. and Rains, E. M., ‘Algebraic aspects of increasing subsequences’, Duke Math. J. 109(1) (2001), 1–65.Google Scholar | DOI

[BR01b] Baik, J. and Rains, E. M., ‘The asymptotics of monotone subsequences of involutions’, Duke Math. J. 109(2) (2001), 205–281.Google Scholar

[BR01c] Baik, J. and Rains, E. M., ‘Symmetrized random permutations’, inRandom Matrix Models and their Applications, Mathematical Sciences Research Institute Publications, 40 (Cambridge University Press, Cambridge, 2001), 1–19.Google Scholar

[Bar15] Barraquand, G., ‘A phase transition for q-TASEP with a few slower particles’, Stochastic Process. Appl. 125(7) (2015), 2674–2699.Google Scholar | DOI

[BBCW18] Barraquand, G., Borodin, A., Corwin, I. and Wheeler, M., ‘Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process’, Duke Math. J. 167(13) (2018), 2457–2529.Google Scholar | DOI

[BC17] Barraquand, G. and Corwin, I., ‘Random-walk in beta-distributed random environment’, Probab. Theory Related Fields 167(3) (2017), 1057–1116.Google Scholar | DOI

[BO11] Baudoin, F. and O’Connell, N., ‘Exponential functionals of Brownian motion and class-one Whittaker functions’, Ann. Inst. Henri Poincaré 47(4) 1096–1120.Google Scholar | DOI

[BG97] Bertini, L. and Giacomin, G., ‘Stochastic Burgers and KPZ equations from particle systems’, Comm. Math. Phys. 183(3) (1997), 571–607.Google Scholar | DOI

[BBNV18] Betea, D., Bouttier, J., Nejjar, P. and Vuletić, M., ‘The free boundary Schur process and applications I’, Ann. Henri Poincaré 1 9 (2018), 3663–3742. Springer.Google Scholar | DOI

[BWZJ15] Betea, D., Wheeler, M. and Zinn-Justin, P., ‘Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures’, J. Algebraic Combin. 42(2) (2015), 555–603.Google Scholar | DOI

[BZ19] Bisi, E. and Zygouras, N., ‘Point-to-line polymers and orthogonal Whittaker functions’, Trans. Amer. Math. Soc. 371(12) (2019), 8339–8379.Google Scholar | DOI

[Bor95] Borodin, A., ‘Limit Jordan normal form of large triangular matrices over a finite field’, Funct. Anal. Appl. 29(4) (1995), 279–281.Google Scholar | DOI

[Bor99] Borodin, A., ‘The law of large numbers and the central limit theorem for the Jordan normal form of large triangular matrices over a finite field’, J. Math. Sci. 96(5) (1999), 3455–3471.Google Scholar

[Bor11] Borodin, A., ‘Schur dynamics of the Schur processes’, Adv. Math. 4(228) (2011), 2268–2291.Google Scholar | DOI

[Bor14] Borodin, A., ‘Integrable probability’, In Proceedings of the ICM, Seoul (2014).Google Scholar

[Bor17] Borodin, A., ‘On a family of symmetric rational functions’, Adv. Math. 306 (2017), 973–1018.Google Scholar | DOI

[Bor18] Borodin, A., ‘Stochastic higher spin six vertex model and Macdonald measures’, J. Math. Phys. 59(2) (2018), 023301.Google Scholar | DOI

[BBC16] Borodin, A., Bufetov, A. and Corwin, I., ‘Directed random polymers via nested contour integrals’, Ann. Phys. 368 (2016), 191–247.Google Scholar | DOI

[BBW16] Borodin, A., Bufetov, A. and Wheeler, M., ‘Between the stochastic six vertex model and Hall–Littlewood processes’, J. Combin. Theory Ser. A (2016), .Google Scholar

[BC13] Borodin, A. and Corwin, I., ‘Discrete time q-taseps’, Int. Math. Res. Not. IMRN 2015(2) (2013), rnt206.Google Scholar

[BC14] Borodin, A. and Corwin, I., ‘Macdonald processes’, Probab. Theory Related Fields 158(1–2) (2014), 225–400.Google Scholar | DOI

[BC15] Borodin, A. and Corwin, I., ‘Discrete time q-TASEPs’, Int. Math. Res. Not. IMRN (2) (2015), 499–537.Google Scholar | DOI

[BCF14] Borodin, A., Corwin, I. and Ferrari, P., ‘Free energy fluctuations for directed polymers in random media in 1+ 1 dimension’, Comm. Pure Appl. Math. 67(7) (2014), 1129–1214.Google Scholar | DOI

[BCFV15] Borodin, A., Corwin, I., Ferrari, P. and Vető, B., ‘Height fluctuations for the stationary KPZ equation’, Math. Phys. Anal. Geom. 18(1) (2015), Art. 20, 95.Google Scholar | DOI

[BCG16] Borodin, A., Corwin, I. and Gorin, V., ‘Stochastic six-vertex model’, Duke Math. J. 165(3) (2016), 563–624.Google Scholar | DOI

[BCGS16] Borodin, A., Corwin, I., Gorin, V. and Shakirov, S., ‘Observables of Macdonald processes’, Trans. Amer. Math. Soc. 368(3) (2016), 1517–1558.Google Scholar | DOI

[BCPS15a] Borodin, A., Corwin, I., Petrov, L. and Sasamoto, T., ‘Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz’, Comm. Math. Phys. 339(3) (2015), 1167–1245.Google Scholar | DOI

[BCPS15b] Borodin, A., Corwin, I., Petrov, L. and Sasamoto, T., ‘Spectral theory for the q-Boson particle system’, Compos. Math. 151 (2015), 1–67.Google Scholar | DOI

[BCR13] Borodin, A., Corwin, I. and Remenik, D., ‘Log-gamma polymer free energy fluctuations via a Fredholm determinant identity’, Comm. Math. Phys. 324(1) (2013), 215–232.Google Scholar | DOI

[BCR15] Borodin, A., Corwin, I. and Remenik, D., ‘A classical limit of Noumi’s q-integral operator’, SIGMA Symmetry Integrability Geom. Methods Appl. 11(0) (2015).Google Scholar

[BCS14] Borodin, A., Corwin, I. and Sasamoto, T., ‘From duality to determinants for q-TASEP and ASEP’, Ann. Probab. 42(6) (2014), 2314–2382.Google Scholar | DOI

[BCT17] Borodin, A., Corwin, I. and Toninelli, F., ‘Stochastic heat equation limit of a (2 + 1)-d growth model’, Comm. Math. Phys. 350(3) (2017), 957–984.Google Scholar | DOI

[BF14a] Borodin, A. and Ferrari, P. L., ‘Anisotropic growth of random surfaces in 2+ 1 dimensions’, Comm. Math. Phys. 325(2) (2014), 603–684.Google Scholar | DOI

[BF14b] Borodin, A. and Ferrari, P. L., ‘Anisotropic growth of random surfaces in 2 + 1 dimensions’, Comm. Math. Phys. 325(2) (2014), 603–684.Google Scholar | DOI

[BG12] Borodin, A. and Gorin, V., Lectures on Integrable Probability, Lecture notes, (St. Petersburg School in Probability and Statistical Physics, 2012), .Google Scholar

[BG15] Borodin, A. and Gorin, V., ‘General 𝛽-Jacobi corners process and the Gaussian free field’, Comm. Pure Appl. Math. 68(10) (2015), 1774–1844.Google Scholar | DOI

[BO17] Borodin, A. and Olshanski, G., ‘The ASEP and determinantal point processes’, Comm. Math. Phys. 353(2) (2017), 853–903.Google Scholar | DOI

[BP14] Borodin, A. and Petrov, L., ‘Integrable probability: From representation theory to macdonald processes’, Probab. Surv. 11 (2014), 1–58.Google Scholar | DOI

[BP16] Borodin, A. and Petrov, L., ‘Nearest neighbor Markov dynamics on Macdonald processes’, Adv. Math. 300 (2016), 71–155.Google Scholar | DOI

[BP18] Borodin, A. and Petrov, L., ‘Higher spin six vertex model and symmetric rational functions’, Selecta Math. (N.S.) 24(2) (2018), 751–874.Google Scholar | DOI

[BR05] Borodin, A. and Rains, E. M., ‘Eynard–Mehta theorem, Schur process, and their Pfaffian analogs’, J. Stat. Phys. 121(3–4) (2005), 291–317.Google Scholar | DOI

[BM18] Bufetov, A. and Matveev, K., ‘Hall–Littlewood RSK field’, Selecta Math. (N.S.) 24(5) (2018), 4839–4884.Google Scholar | DOI

[BP15] Bufetov, A. and Petrov, L., ‘Law of large numbers for infinite random matrices over a finite field’, Selecta Math. 21(4) (2015), 1271–1338.Google Scholar | DOI

[CDR10] Calabrese, P., Le Doussal, P. and Rosso, A., ‘Free-energy distribution of the directed polymer at high temperature’, Europhys. Lett. 90(2)20002 (2010).Google Scholar | DOI

[Cor12] Corwin, I., ‘The Kardar–Parisi–Zhang equation and universality class’, Random Matrices Theory Appl. 1(01) (2012).Google Scholar | DOI

[Cor14] Corwin, I., ‘Macdonald processes, quantum integrable systems and the Kardar–Parisi–Zhang universality class’, Preprint, 2014, .Google Scholar

[CD18] Corwin, I. and Dimitrov, E., ‘Transversal fluctuations of the ASEP stochastic six vertex model, and Hall–Littlewood Gibbsian line ensembles’, Comm. Math. Phys. 363(2) (2018), 435–501.Google Scholar | DOI

[CH14] Corwin, I. and Hammond, A., ‘Brownian Gibbs property for Airy line ensembles’, Invent. Math. 195(2) (2014), 441–508.Google Scholar | DOI

[CH16] Corwin, I. and Hammond, A., ‘KPZ line ensemble’, Probab. Theory Related Fields 166(1–2) (2016), 67–185.Google Scholar | DOI

[COSZ14] Corwin, I., O’Connell, N., Seppäläinen, T. and Zygouras, N., ‘Tropical combinatorics and Whittaker functions’, Duke Math. J. 163(3) (2014), 513–563.Google Scholar | DOI

[CP15] Corwin, I. and Petrov, L., ‘The q-PushASEP: A new integrable model for traffic in 1+ 1 dimension’, J. Stat. Phys. 160(4) (2015), 1005–1026.Google Scholar | DOI

[CSS15] Corwin, I., Seppäläinen, T. and Shen, H., ‘The strict-weak lattice polymer’, J. Stat. Phys. 160 (2015), 1027–1053.Google Scholar | DOI

[CS18] Corwin, I. and Shen, H., ‘Open ASEP in the weakly asymmetric regime’, Comm. Pure Appl. Math. 71(10) (2018), 2065–2128.Google Scholar | DOI

[CT16] Corwin, I. and Toninelli, F., ‘Stationary measure of the driven two-dimensional q-Whittaker particle system on the torus’, Electron. Commun. Probab. 21 (2016).Google Scholar | DOI

[DT16] Dembo, A. and Tsai, L., ‘Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation’, Comm. Math. Phys. 341(1) (2016), 219–261.Google Scholar | DOI

[DF90] Diaconis, P. and Fill, J. A., ‘Strong stationary times via a new form of duality’, Ann. Probab. 18(4) (1990), 1483–1522.Google Scholar | DOI

[DGP17] Diehl, J., Gubinelli, M. and Perkowski, N., ‘The Kardar–Parisi–Zhang equation as scaling limit of weakly asymmetric interacting Brownian motions’, Comm. Math. Phys. 354(2) (2017), 549–589.Google Scholar | DOI

[Dim18] Dimitrov, E., ‘KPZ and Airy limits of Hall–Littlewood random plane partitions’, Ann. Inst. Henri Poincaré 54(2) (2018), 640–693.Google Scholar | DOI

[Dot10] Dotsenko, V., ‘Replica Bethe ansatz derivation of the Tracy–Widom distribution of the free energy fluctuations in one-dimensional directed polymers’, J. Stat. Mech. 2010(07) (2010), P07010.Google Scholar

[FHH+09] Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J. and Yanagida, S., ‘A commutative algebra on degenerate CP1 and Macdonald polynomials’, J. Math. Phys. 50(9) (2009), 095215.Google Scholar | DOI

[FV15] Ferrari, P. L. and Vető, B., ‘Tracy–Widom asymptotics for q-TASEP’, Ann. Inst. Henri Poincaré Probab. Stat. 51(4) (2015), 1465–1485.Google Scholar | DOI

[FNR06] Forrester, P. J., Nagao, T. and Rains, E. M., ‘Correlation functions for random involutions’, Int. Math. Res. Not. IMRN 2006 (2006), 89796.Google Scholar

[Ful02] Fulman, J., ‘Random matrix theory over finite fields’, Bull. Amer. Math. Soc. (N.S.) 39(1) (2002), 51–85.Google Scholar | DOI

[GRAS16] Georgiou, N., Rassoul-Agha, F. and Seppäläinen, T., ‘Variational formulas and cocycle solutions for directed polymer and percolation models’, Comm. Math. Phys. 346(2) (2016), 741–779.Google Scholar | DOI

[GRASY15] Georgiou, N., Rassoul-Agha, F., Seppäläinen, T. and Yilmaz, A., ‘Ratios of partition functions for the log-gamma polymer’, Ann. Probab. 43(5) (2015), 2282–2331.Google Scholar | DOI

[GS13] Georgiou, N. and Seppäläinen, T., ‘Large deviation rate functions for the partition function in a log-gamma distributed random potential’, Ann. Probab. 41(6) (2013), 4248–4286.Google Scholar | DOI

[GLO08] Gerasimov, A., Lebedev, D. and Oblezin, S., ‘Baxter operator and Archimedean Hecke algebra’, Comm. Math. Phys. 284(3) (2008), 867–896.Google Scholar | DOI

[GLO09] Gerasimov, A., Lebedev, D. and Oblezin, S., ‘On q-deformed gl -whittaker function’, Comm. Math. Phys. 294(1) (2009), 97.Google Scholar | DOI

[Gho17a] Ghosal, P., ‘Correlation functions of the Pfaffian Schur process using Macdonald difference operators’, Preprint, 2017, .Google Scholar

[Gho17b] Ghosal, P., ‘Hall–Littlewood-PushTASEP and its KPZ limit’, Preprint, 2017, .Google Scholar

[Giv97] Givental, A., ‘Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture’, Amer. Math. Soc. Transl. Ser. 2 180 (1997), 103–115.Google Scholar

[GO09] Gnedin, A. and Olshanski, G., ‘A q-analogue of de Finetti’s theorem’, Electron. J. Combin. 16(1) (2009), Research Paper 78, 16.Google Scholar | DOI

[GKV14] Gorin, V., Kerov, S. and Vershik, A., ‘Finite traces and representations of the group of infinite matrices over a finite field’, Adv. Math. 254 (2014), 331–395.Google Scholar | DOI

[GS15] Gorin, V. and Shkolnikov, M., ‘Multilevel Dyson Brownian motions via Jack polynomials’, Probab. Theory Related Fields 163(3–4) (2015), 413–463.Google Scholar | DOI

[GZ18] Gorin, V. and Zhang, L., ‘Interlacing adjacent levels of 𝛽-Jacobi corners processes’, Probab. Theory Related Fields 172(3–4) (2018), 915–981.Google Scholar | DOI

[Gra17] Grange, P., ‘Log-gamma directed polymer with one free end via coordinate Bethe ansatz’, J. Stat. Mech. Theory Exp. 2017(7) (2017), 073102.Google Scholar | DOI

[GLD12] Gueudré, T. and Le Doussal, P., ‘Directed polymer near a hard wall and KPZ equation in the half-space’, Europhys. Lett. 100(2) (2012), 26006.Google Scholar | DOI

[GS92] Gwa, L. and Spohn, H., ‘Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian’, Phys. Rev. Lett. 68(6) (1992), 725.Google Scholar | DOI

[HQ18] Hairer, M. and Quastel, J., ‘A class of growth models rescaling to KPZ’, Forum Math., Pi 6 (2018).Google Scholar | DOI

[Has82] Hashizume, M., ‘Whittaker functions on semisimple Lie groups’, Hiroshima Math. J. 12(2) (1982), 259–293.Google Scholar | DOI

[IS07] Ishii, T. and Stade, E., ‘New formulas for Whittaker functions on GL(n, ℝ)’, J. Funct. Anal. 244(1) (2007), 289–314.Google Scholar | DOI

[Jor82] Jorgensen, B., Statistical Properties of the Generalized Inverse Gaussian Distribution, Lecure Notes in Statistics, 9, (Springer, 1982).Google Scholar | DOI

[KPZ86] Kardar, M., Parisi, G. and Zhang, Y., ‘Dynamic scaling of growing interfaces’, Phys. Rev. Lett. 56 (1986), 889–892.Google ScholarPubMed | DOI

[Knu70] Knuth, D., ‘Permutations, matrices, and generalized young tableaux’, Pacific J. Math. 34(3) (1970), 709–727.Google Scholar | DOI

[KQ18] Krishnan, A. and Quastel, J., ‘Tracy–Widom fluctuations for perturbations of the log-gamma polymer in intermediate disorder’, Ann. Appl. Probab. 28(6) (2018), 3736–3764.Google Scholar | DOI

[Mac95] Macdonald, I. G., Symmetric Functions and Hall Polynomials, vol. 354, (Clarendon Press, Oxford, 1995).Google Scholar

[Mat19] Matveev, K., ‘Macdonald-positive specializations of the algebra of symmetric functions: proof of the Kerov conjecture’, Ann. of Math. (2) 189(1) (2019), 277–316.Google Scholar | DOI

[MP17] Matveev, K. and Petrov, L., ‘q-randomized Robinson–Schensted–Knuth correspondences and random polymers’, Ann. Inst. H. Poincaré D 4(1) (2017), 1–123.Google Scholar

[NZ16] Nguyen, V. and Zygouras, N., ‘Variants of geometric RSK, geometric PNG, and the multipoint distribution of the log-gamma polymer’, Int. Math. Res. Not. IMRN 2017(15) (2017), 4732–4795.Google Scholar

[NS] Noumi, M. and Sano, A., An infinite family of higher-order difference operators that commute with Ruijsenaars operators of type A, unpublished.Google Scholar

[NS12] Noumi, M. and Shiraishi, J..Google Scholar

[Nte16] Nteka, I., (2016), ‘Positive temperature dynamics on Gelfand–Tsetlin patterns restricted by wall’, PhD Thesis, University of Warwick.Google Scholar

[O’C12] O’Connell, N., ‘Directed polymers and the quantum Toda lattice’, Ann. Probab. 40(2) (2012), 437–458.Google Scholar | DOI

[O’C14] O’Connell, N., Whittaker Functions and Related Stochastic Processes, (MSRI Publications, 2014), .Google Scholar

[OO15] O’Connell, N. and Ortmann, J., ‘Tracy–Widom asymptotics for a random polymer model with gamma-distributed weights’, Electron. J. Probab. 20(25) (2015), 1–18.Google Scholar

[OP13] O’Connell, N. and Pei, Y., ‘A q-weighted version of the Robinson–Schensted algorithm’, Electron. J. Probab. 18 (2013).Google Scholar

[OSZ14] O’Connell, N., Seppäläinen, T. and Zygouras, N., ‘Geometric RSK correspondence, Whittaker functions and symmetrized random polymers’, Invent. Math. 197(2) (2014), 361–416.Google Scholar | DOI

[OY01] O’Connell, N. and Yor, M., ‘Brownian analogues of Burke’s theorem’, Stochastic Process. Appl. 96(2) (2001), 285–304.Google Scholar | DOI

[Oko01] Okounkov, A., ‘Infinite wedge and random partitions’, Selecta Math. (N.S.) 7(1) (2001), 57–81.Google Scholar | DOI

[OR03] Okounkov, A. and Reshetikhin, N., ‘Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram’, J. Amer. Math. Soc. 16(3) (2003), 581–603.Google Scholar | DOI

[OP17] Orr, D. and Petrov, L., ‘Stochastic higher spin six vertex model and q-TASEPs’, Adv. Math. 317 (2017), 473–525.Google Scholar | DOI

[OQR17] Ortmann, J., Quastel, J. and Remenik, D., ‘A Pfaffian representation for flat ASEP’, Comm. Pure Appl. Math. 70(1) (2017), 3–89.Google Scholar | DOI

[Par19] Parekh, S., ‘The KPZ limit of ASEP with boundary’, Comm. Math. Phys. 365(2) (2019), 569–649.Google Scholar | DOI

[Pov13] Povolotsky, A. M., ‘On the integrability of zero-range chipping models with factorized steady states’, J. Phys. A 46(46) (2013), 465205.Google Scholar

[Qua12] Quastel, J., Introduction to KPZ, available online at , 2012.Google Scholar | DOI

[Rai00] Rains, E. M., ‘Correlation functions for symmetrized increasing subsequences’, Preprint, 2000, .Google Scholar

[Rai18] Rains, E. M., ‘Multivariate quadratic transformations and the interpolation kernel’, SIGMA 14(0) (2018), 19–69.Google Scholar

[RY13] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, Vol. 293, (Springer Science & Business Media, 2013).Google Scholar

[SI04] Sasamoto, T. and Imamura, T., ‘Fluctuations of the one-dimensional polynuclear growth model in half-space’, J. Stat. Phys. 115(3–4) (2004), 749–803.Google Scholar | DOI

[SS10] Sasamoto, T. and Spohn, H., ‘Exact height distributions for the KPZ equation with narrow wedge initial condition’, Nuclear Phys. B 834(3) (2010), 523–542.Google Scholar | DOI

[STS93] Semenov-Tian-Shansky, M. A., ‘Quantization of open Toda lattices’, inDynamical Systems VII: Integrable Systems Nonholonomic Dynamical Systems, Vol. 16 (Springer, 1993), 226.Google Scholar

[Sep12] Seppäläinen, T., ‘Scaling for a one-dimensional directed polymer with boundary conditions’, Ann. Probab. 40(1) (2012), 19–73.Google Scholar | DOI

[Sta01] Stade, E., ‘Mellin transforms of GL(n, ℝ) Whittaker functions’, Amer. J. Math. 123(1) (2001), 121–161.Google Scholar | DOI

[TLD14] Thiery, T. and Le Doussal, P., ‘Log-gamma directed polymer with fixed endpoints via the Bethe ansatz replica’, J. Stat. Mech. 2014(10) (2014), P10018.Google Scholar | DOI

[TW09] Tracy, C. A. and Widom, H., ‘Asymptotics in ASEP with step initial condition’, Comm. Math. Phys. 290(1) (2009), 129–154.Google Scholar | DOI

[TW13a] Tracy, C. A. and Widom, H., ‘The asymmetric simple exclusion process with an open boundary’, J. Math. Phys. 54(10) (2013), 103301.Google Scholar | DOI

[TW13b] Tracy, C. A. and Widom, H., ‘The Bose gas and asymmetric simple exclusion process on the half-line’, J. Stat. Phys. 150(1) (2013), 1–12.Google Scholar | DOI

[Ven15] Venkateswaran, V., ‘Symmetric and nonsymmetric Hall–Littlewood polynomials of type BC’, J. Algebraic Comb. 42 (2015), 331–364.Google Scholar | DOI

[WZJ16] Wheeler, M. and Zinn-Justin, P., ‘Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons’, Adv. Math. 299 (2016), 543–600.Google Scholar | DOI

[Wu18] Wu, X., ‘Intermediate disorder regime for half-space directed polymers’, Preprint, 2018, .Google Scholar

Cité par Sources :