Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_2,
     author = {VINCENT DELECROIX and \'ELISE GOUJARD and PETER ZOGRAF and ANTON ZORICH},
     title = {ENUMERATION {OF} {MEANDERS} {AND} {MASUR{\textendash}VEECH} {VOLUMES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.2/}
}
                      
                      
                    TY - JOUR AU - VINCENT DELECROIX AU - ÉLISE GOUJARD AU - PETER ZOGRAF AU - ANTON ZORICH TI - ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.2/ DO - 10.1017/fmp.2020.2 LA - en ID - 10_1017_fmp_2020_2 ER -
%0 Journal Article %A VINCENT DELECROIX %A ÉLISE GOUJARD %A PETER ZOGRAF %A ANTON ZORICH %T ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES %J Forum of Mathematics, Pi %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.2/ %R 10.1017/fmp.2020.2 %G en %F 10_1017_fmp_2020_2
VINCENT DELECROIX; ÉLISE GOUJARD; PETER ZOGRAF; ANTON ZORICH. ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.2
[ACPRS] , , , and , ‘Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces’, Nuclear Phys. B 866(3) (2013), 414–443.Google Scholar | DOI
[Arn] , ‘Ramified covering ℂP2 → S 4 , hyperbolicity and projective topology’, Sib. Math. J. 29(5) (1988), 36–47.Google Scholar
[AEZ1] , and , ‘Counting generalized Jenkins–Strebel differentials’, Geom. Dedicata 170(1) (2014), 195–217.Google Scholar | DOI
[AEZ2] , and , ‘Right-angled billiards and volumes of moduli spaces of quadratic differentials on ℂP1’, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 1307–1381.Google Scholar
[DGZZ] , , and , ‘Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes’, Astérisque 415(1) (2020), with an Appendix by P. Engel, to appear.Google Scholar
[DGZZ2] , , and , ‘Square-tiled surfaces with fixed combinatorics in invariant arithmetic suborbifolds: density, equidistribution, non-correlation’, in preparation.Google Scholar
[DGZZ3] , , and , ‘Masur-Veech volumes, frequencies of simple closed geodesics and intersection numbers of moduli spaces of curves’, Preprint, 2019, .Google Scholar
[DiFGG1] , and , ‘Meander, folding, and arch statistics’, Math. Comput. Model. 26(8–10) (1997), 97–147.Google Scholar | DOI
[DiFGG2] , and , ‘Meanders: exact asymptotics’, Nuclear Phys. B 570(3) (2000), 699–712.Google Scholar | DOI
[DdHb] and , ‘On the density of Strebel differentials’, Invent. Math. 30(2) (1975), 175–179.Google Scholar | DOI
[EHL] , and , ‘Effective equidistribution of primitive rational points on expanding horospheres’, Preprint, 2018, .Google Scholar
[EMi] and , ‘Invariant and stationary measures for the SL(ℝ) action on moduli space’, Publ. Inst. Hautes Etudes Sci. 127 (2018), 95–324.Google Scholar | DOI
[EMiMo1] , and , ‘Isolation, equidistribution, and orbit closures for the SL(ℝ)-action on moduli space’, Ann. of Math. (2) 182(2) (2015), 673–721.Google Scholar | DOI
[EMiMo2] , and , ‘Effective counting of simple closed geodesics on hyperbolic surfaces’, Preprint 2019, .Google Scholar
[EOk] and , ‘Pillowcases and quasimodular forms’, inAlgebraic Geometry and Number Theory, Honor of Vladimir Drinfeld’s 50th Birthday, (ed. ) Progress in Mathematics, 253 (Birkhäuser, Basel, 2006), 1–25.Google Scholar
[G1] , ‘Siegel–Veech constants for strata of moduli spaces of quadratic differentials’, GAFA 25(5) (2015), 1440–1492.Google Scholar
[G2] , ‘Volumes of strata of moduli spaces of quadratic differentials: getting explicit values’, Ann. Inst. Fourier (Grenoble) 66(6) (2016), 2203–2251.Google Scholar | DOI
[Gd] , ‘Combinatorial identities. A standardized set of tables listing 500 binomial coefficient summations’ Rev. ed. (English) Morgantown (1972).Google Scholar
[Jen] , ‘A transfer matrix approach to the enumeration of plane meanders’, J. Phys. A 33(34) (2000), 5953–5963.Google Scholar | DOI
[KoZo] and , ‘Connected components of the moduli spaces of Abelian differentials with prescribed singularities’, Invent. Math. 153(3) (2003), 631–678.Google Scholar | DOI
[LdZv] and , ‘Plane and projective meanders’, Theoret. Comput. Sci. 117 (1993), 227–241.Google Scholar | DOI
[LNW] , and , ‘Finiteness of Teichmüller curves in non-arithmetic rank 1 orbit closures’, Amer. J. Math. 139(6) (2017), 1449–1463.Google Scholar | DOI
[Mas] , ‘Interval exchange transformations and measured foliations’, Ann. of Math. (2) 115 (1982), 169–200.Google Scholar | DOI
[Mi] , ‘Growth of the number of simple closed geodesics on hyperbolic surfaces’, Ann. of Math. (2) 168(1) (2008), 97–125.Google Scholar | DOI
[MiWri] and , ‘The boundary of an affine invariant submanifold’, Invent. Math. 209(3) (2017), 927–984.Google Scholar | DOI
[Mo] , Counting Labelled Trees, Canadian Mathematical Monographs, 1 (Canadian Mathematical Congress, Montreal, 1970), 113.Google Scholar
[NRW] , and , ‘Effective counting on translation surfaces’, Adv. Math. 360 (2020), 106890.Google Scholar | DOI
[Po] , ‘Sur un téorème de géométrie’, Rend. Circ. Mat. Palermo (2) 33 (1912), 375–407. (Oeuvres, T.VI, 499–538).Google Scholar | DOI
[Str] , Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, Berlin, 1984), 184.Google Scholar | DOI
[Vee1] , ‘Gauss measures for transformations on the space of interval exchange maps’, Ann. of Math. (2) 115 (1982), 201–242.Google Scholar | DOI
[Wri1] , ‘The field of definition of affine invariant submanifolds of the moduli space of Abelian differentials’, Geom. Topol. 18(3) (2014), 1323–1341.Google Scholar | DOI
[Wri2] , ‘Cylinder deformations in orbit closures of translation surfaces’, Geom. Topol. 19(1) (2015), 413–438.Google Scholar | DOI
[Zim] , Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81 (Birkhäuser, Boston–Basel–Stuttgart, 1984), 209.Google Scholar | DOI
[Zor1] , ‘Flat surfaces’, inFrontiers in Number Theory, Physics, and Geometry. I (Springer, Berlin, 2006), 437–583.Google Scholar | DOI
[Zor2] , ‘Square-tiled surfaces and Teichmüller volumes of the moduli spaces of Abelian differentials’, inRigidity in Dynamics and Geometry (Springer, Berlin, 2002), 459–471, (Cambridge, 2000).Google Scholar | DOI
[Zor3] , ‘Explicit Jenkins–Strebel representatives of all strata of Abelian and quadratic differentials’, J. Mod. Dyn. 2(1) (2008), 139–185.Google Scholar | DOI
Cité par Sources :
