ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

A meander is a topological configuration of a line and a simple closed curve in the plane (or a pair of simple closed curves on the 2-sphere) intersecting transversally. Meanders can be traced back to H. Poincaré and naturally appear in various areas of mathematics, theoretical physics and computational biology (in particular, they provide a model of polymer folding). Enumeration of meanders is an important open problem. The number of meanders with $2N$ crossings grows exponentially when $N$ grows, but the long-standing problem on the precise asymptotics is still out of reach.We show that the situation becomes more tractable if one additionally fixes the topological type (or the total number of minimal arcs) of a meander. Then we are able to derive simple asymptotic formulas for the numbers of meanders as $N$ tends to infinity. We also compute the asymptotic probability of getting a simple closed curve on a sphere by identifying the endpoints of two arc systems (one on each of the two hemispheres) along the common equator.The new tools we bring to bear are based on interpretation of meanders as square-tiled surfaces with one horizontal and one vertical cylinder. The proofs combine recent results on Masur–Veech volumes of moduli spaces of meromorphic quadratic differentials in genus zero with our new observation that horizontal and vertical separatrix diagrams of integer quadratic differentials are asymptotically uncorrelated. The additional combinatorial constraints we impose in this article yield explicit polynomial asymptotics.
@article{10_1017_fmp_2020_2,
     author = {VINCENT DELECROIX and \'ELISE GOUJARD and PETER ZOGRAF and ANTON ZORICH},
     title = {ENUMERATION {OF} {MEANDERS} {AND} {MASUR{\textendash}VEECH} {VOLUMES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.2/}
}
TY  - JOUR
AU  - VINCENT DELECROIX
AU  - ÉLISE GOUJARD
AU  - PETER ZOGRAF
AU  - ANTON ZORICH
TI  - ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.2/
DO  - 10.1017/fmp.2020.2
LA  - en
ID  - 10_1017_fmp_2020_2
ER  - 
%0 Journal Article
%A VINCENT DELECROIX
%A ÉLISE GOUJARD
%A PETER ZOGRAF
%A ANTON ZORICH
%T ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.2/
%R 10.1017/fmp.2020.2
%G en
%F 10_1017_fmp_2020_2
VINCENT DELECROIX; ÉLISE GOUJARD; PETER ZOGRAF; ANTON ZORICH. ENUMERATION OF MEANDERS AND MASUR–VEECH VOLUMES. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.2

[ACPRS] Andersen, J. E., Chekhov, L. O., Penner, R. C., Reidys, C. M. and Sułkowski, P., ‘Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces’, Nuclear Phys. B 866(3) (2013), 414–443.Google Scholar | DOI

[Arn] Arnold, V. I., ‘Ramified covering ℂP2 → S 4 , hyperbolicity and projective topology’, Sib. Math. J. 29(5) (1988), 36–47.Google Scholar

[AEZ1] Athreya, J., Eskin, A. and Zorich, A., ‘Counting generalized Jenkins–Strebel differentials’, Geom. Dedicata 170(1) (2014), 195–217.Google Scholar | DOI

[AEZ2] Athreya, J., Eskin, A. and Zorich, A., ‘Right-angled billiards and volumes of moduli spaces of quadratic differentials on ℂP1’, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 1307–1381.Google Scholar

[DGZZ] Delecroix, V., Goujard, E., Zograf, P. and Zorich, A., ‘Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes’, Astérisque 415(1) (2020), with an Appendix by P. Engel, to appear.Google Scholar

[DGZZ2] Delecroix, V., Goujard, E., Zograf, P. and Zorich, A., ‘Square-tiled surfaces with fixed combinatorics in invariant arithmetic suborbifolds: density, equidistribution, non-correlation’, in preparation.Google Scholar

[DGZZ3] Delecroix, V., Goujard, E., Zograf, P. and Zorich, A., ‘Masur-Veech volumes, frequencies of simple closed geodesics and intersection numbers of moduli spaces of curves’, Preprint, 2019, .Google Scholar

[DiFGG1] Di Francesco, P., Golinelli, O. and Guitter, E., ‘Meander, folding, and arch statistics’, Math. Comput. Model. 26(8–10) (1997), 97–147.Google Scholar | DOI

[DiFGG2] Di Francesco, P., Golinelli, O. and Guitter, E., ‘Meanders: exact asymptotics’, Nuclear Phys. B 570(3) (2000), 699–712.Google Scholar | DOI

[DdHb] Douady, A. and Hubbard, J., ‘On the density of Strebel differentials’, Invent. Math. 30(2) (1975), 175–179.Google Scholar | DOI

[EHL] El-Baz, D., Huang, B. and Lee, M., ‘Effective equidistribution of primitive rational points on expanding horospheres’, Preprint, 2018, .Google Scholar

[EMi] Eskin, A. and Mirzakhani, M., ‘Invariant and stationary measures for the SL(ℝ) action on moduli space’, Publ. Inst. Hautes Etudes Sci. 127 (2018), 95–324.Google Scholar | DOI

[EMiMo1] Eskin, A., Mirzakhani, M. and Mohammadi, A., ‘Isolation, equidistribution, and orbit closures for the SL(ℝ)-action on moduli space’, Ann. of Math. (2) 182(2) (2015), 673–721.Google Scholar | DOI

[EMiMo2] Eskin, A., Mirzakhani, M. and Mohammadi, A., ‘Effective counting of simple closed geodesics on hyperbolic surfaces’, Preprint 2019, .Google Scholar

[EOk] Eskin, A. and Okounkov, A., ‘Pillowcases and quasimodular forms’, inAlgebraic Geometry and Number Theory, Honor of Vladimir Drinfeld’s 50th Birthday, (ed. Victor, G.) Progress in Mathematics, 253 (Birkhäuser, Basel, 2006), 1–25.Google Scholar

[G1] Goujard, E., ‘Siegel–Veech constants for strata of moduli spaces of quadratic differentials’, GAFA 25(5) (2015), 1440–1492.Google Scholar

[G2] Goujard, E., ‘Volumes of strata of moduli spaces of quadratic differentials: getting explicit values’, Ann. Inst. Fourier (Grenoble) 66(6) (2016), 2203–2251.Google Scholar | DOI

[Gd] Gould, H. W., ‘Combinatorial identities. A standardized set of tables listing 500 binomial coefficient summations’ Rev. ed. (English) Morgantown (1972).Google Scholar

[Jen] Jensen, I., ‘A transfer matrix approach to the enumeration of plane meanders’, J. Phys. A 33(34) (2000), 5953–5963.Google Scholar | DOI

[KoZo] Kontsevich, M. and Zorich, A., ‘Connected components of the moduli spaces of Abelian differentials with prescribed singularities’, Invent. Math. 153(3) (2003), 631–678.Google Scholar | DOI

[LdZv] Lando, S. K. and Zvonkin, A. K., ‘Plane and projective meanders’, Theoret. Comput. Sci. 117 (1993), 227–241.Google Scholar | DOI

[LNW] Lanneau, E., Nguyen, D.-M. and Wright, A., ‘Finiteness of Teichmüller curves in non-arithmetic rank 1 orbit closures’, Amer. J. Math. 139(6) (2017), 1449–1463.Google Scholar | DOI

[Mas] Masur, H., ‘Interval exchange transformations and measured foliations’, Ann. of Math. (2) 115 (1982), 169–200.Google Scholar | DOI

[Mi] Mirzakhani, M., ‘Growth of the number of simple closed geodesics on hyperbolic surfaces’, Ann. of Math. (2) 168(1) (2008), 97–125.Google Scholar | DOI

[MiWri] Mirzakhani, M. and Wright, A., ‘The boundary of an affine invariant submanifold’, Invent. Math. 209(3) (2017), 927–984.Google Scholar | DOI

[Mo] Moon, J. W., Counting Labelled Trees, Canadian Mathematical Monographs, 1 (Canadian Mathematical Congress, Montreal, 1970), 113.Google Scholar

[NRW] Nevo, A., Rühr, R. and Weiss, B., ‘Effective counting on translation surfaces’, Adv. Math. 360 (2020), 106890.Google Scholar | DOI

[Po] Poincaré, H., ‘Sur un téorème de géométrie’, Rend. Circ. Mat. Palermo (2) 33 (1912), 375–407. (Oeuvres, T.VI, 499–538).Google Scholar | DOI

[Str] Strebel, K., Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, Berlin, 1984), 184.Google Scholar | DOI

[Vee1] Veech, W., ‘Gauss measures for transformations on the space of interval exchange maps’, Ann. of Math. (2) 115 (1982), 201–242.Google Scholar | DOI

[Wri1] Wright, A., ‘The field of definition of affine invariant submanifolds of the moduli space of Abelian differentials’, Geom. Topol. 18(3) (2014), 1323–1341.Google Scholar | DOI

[Wri2] Wright, A., ‘Cylinder deformations in orbit closures of translation surfaces’, Geom. Topol. 19(1) (2015), 413–438.Google Scholar | DOI

[Zim] Zimmer, R. J., Ergodic Theory and Semisimple Groups, Monographs in Mathematics, 81 (Birkhäuser, Boston–Basel–Stuttgart, 1984), 209.Google Scholar | DOI

[Zor1] Zorich, A., ‘Flat surfaces’, inFrontiers in Number Theory, Physics, and Geometry. I (Springer, Berlin, 2006), 437–583.Google Scholar | DOI

[Zor2] Zorich, A., ‘Square-tiled surfaces and Teichmüller volumes of the moduli spaces of Abelian differentials’, inRigidity in Dynamics and Geometry (Springer, Berlin, 2002), 459–471, (Cambridge, 2000).Google Scholar | DOI

[Zor3] Zorich, A., ‘Explicit Jenkins–Strebel representatives of all strata of Abelian and quadratic differentials’, J. Mod. Dyn. 2(1) (2008), 139–185.Google Scholar | DOI

Cité par Sources :