Brill-Noether theory for curves of a fixed gonality
Forum of Mathematics, Pi, Tome 9 (2021)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a generalisation of the Brill-Noether theorem for the variety of special divisors$W^r_d(C)$ on a general curve C of prescribed gonality. Our main theorem gives a closed formula for the dimension of$W^r_d(C)$. We build on previous work of Pflueger, who used an analysis of the tropical divisor theory of special chains of cycles to give upper bounds on the dimensions of Brill-Noether varieties on such curves. We prove his conjecture, that this upper bound is achieved for a general curve. Our methods introduce logarithmic stable maps as a systematic tool in Brill-Noether theory. A precise relation between the divisor theory on chains of cycles and the corresponding tropical maps theory is exploited to prove new regeneration theorems for linear series with negative Brill-Noether number. The strategy involves blending an analysis of obstruction theories for logarithmic stable maps with the geometry of Berkovich curves. To show the utility of these methods, we provide a short new derivation of lifting for special divisors on a chain of cycles with generic edge lengths, proved using different techniques by Cartwright, Jensen, and Payne. A crucial technical result is a new realisability theorem for tropical stable maps in obstructed geometries, generalising a well-known theorem of Speyer on genus$1$ curves to arbitrary genus.
@article{10_1017_fmp_2020_14,
     author = {David Jensen and Dhruv Ranganathan},
     title = {Brill-Noether theory for curves of a fixed gonality},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {9},
     year = {2021},
     doi = {10.1017/fmp.2020.14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.14/}
}
TY  - JOUR
AU  - David Jensen
AU  - Dhruv Ranganathan
TI  - Brill-Noether theory for curves of a fixed gonality
JO  - Forum of Mathematics, Pi
PY  - 2021
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.14/
DO  - 10.1017/fmp.2020.14
LA  - en
ID  - 10_1017_fmp_2020_14
ER  - 
%0 Journal Article
%A David Jensen
%A Dhruv Ranganathan
%T Brill-Noether theory for curves of a fixed gonality
%J Forum of Mathematics, Pi
%D 2021
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.14/
%R 10.1017/fmp.2020.14
%G en
%F 10_1017_fmp_2020_14
David Jensen; Dhruv Ranganathan. Brill-Noether theory for curves of a fixed gonality. Forum of Mathematics, Pi, Tome 9 (2021). doi: 10.1017/fmp.2020.14

[1] Abramovich, D., Caporaso, L. and Payne, S., ‘The tropicalization of the moduli space of curves’, Ann. Sci. Éc. Norm. Supér. 48 (2015), 765–809.Google Scholar | DOI

[2] Abramovich, D. and Chen, Q., ‘Stable logarithmic maps to Deligne-Faltings pairs II’, Asian J. Math. 18 (2014), 465–488.Google Scholar | DOI

[3] Abramovich, D., Chen, Q., Gillam, D., Huang, Y., Olsson, M., Satriano, M. and Sun, S., ‘Logarithmic geometry and moduli’, in Handbook of moduli. Vol. I, 1–61, Adv. Lect. Math. (ALM), 24, Int. Press, Somerville, MA, 2013.Google Scholar

[4] Abramovich, D., Chen, Q., Marcus, S., Ulirsch, M. and Wise, J., ‘Skeletons and fans of logarithmic structures’, in Nonarchimedean and Tropical Geometry . Proceedings of the Simons Symposium (Springer, 2016), 287–336.Google Scholar | DOI

[5] Abramovich, D. and Wise, J., ‘Birational invariance in logarithmic Gromov-Witten theory’, Comput. Math. 154 (2018), 595–620.Google Scholar

[6] Amini, O., Baker, M., Brugallé, E. and Rabinoff, J., ‘Lifting harmonic morphisms. I: metrized complexes and Berkovich skeleta’, Res. Math. Sci. 2 (2015), 67.Google Scholar | DOI

[7] Amini, O., Baker, M., Brugallé, E. and Rabinoff, J., ‘Lifting harmonic morphisms. II: tropical curves and metrized complexes’, Algebra Number Theory 9 (2015), 267–315.Google Scholar | DOI

[8] Baker, M., ‘Specialization of linear systems from curves to graphs’, Algebra Number Theory 2 (2008), 613–653.Google Scholar | DOI

[9] Baker, M. and Jensen, D., ‘Degeneration of linear series from the tropical point of view and applications’, in Nonarchimedean and Tropical Geometry . Proceedings of the Simons Symposium (Springer, 2016), 365–433.Google Scholar | DOI

[10] Baker, M. and Norine, S., ‘Riemann-Roch and Abel-Jacobi theory on a finite graph’, Adv. Math. 215 (2007), 766–788.Google Scholar | DOI

[11] Baker, M., Payne, S. and Rabinoff, J., ‘On the structure of non-Archimedean analytic curves’, in Tropical and Non-Archimedean Geometry, vol. 605 of Contemporary Mathematics (American Mathematical Society, Providence, RI, 2013), 93–121.Google Scholar | DOI

[12] Baker, M., Payne, S. and Rabinoff, J., ‘Nonarchimedean geometry, tropicalization, and metrics on curves’, Algebr. Geom. 3 (2016), 63–105.Google Scholar | DOI

[13] Ballico, E. and Keem, C., ‘On linear series on general -gonal projective curves’, Proc. Amer. Math. Soc. 124 (1996), 7–9.Google Scholar | DOI

[14] Cartwright, D., ‘Lifting matroid divisors on tropical curves’, Res. Math. Sci. 2 (2015), 1–24.Google Scholar | DOI

[15] Cartwright, D., Jensen, D. and Payne, S., ‘Lifting divisors on a generic chain of loops’, Can. Math. Bull. 58 (2015), 250–262.Google Scholar | DOI

[16] Cavalieri, R., Markwig, H. and Ranganathan, D., ‘Tropicalizing the space of admissible covers’, Math. Ann. 364 (2016), 1275–1313.Google Scholar | DOI

[17] Chen, Q., ‘Stable logarithmic maps to Deligne-Faltings pairs I’, Ann. Math. 180 (2014), 341–392.Google Scholar | DOI

[18] Cheung, M.-W., Fantini, L., Park, J. and Ulirsch, M., ‘Faithful realizability of tropical curves’, Int. Math. Res. Not. 5 (2015), 4706–4727.Google Scholar

[19] Clifford, W. K., ‘On the classification of loci’, Philos. Trans. R. S. Lond. 169 (1878), 663–681.Google Scholar

[20] Cook-Powell, K. and Jensen, D., ‘Components of Brill-Noether loci for curves of fixed gonality’, (2019), arXiv:1907.08366v1.Google Scholar | DOI

[21] Cools, F., Draisma, J., Payne, S. and Robeva, E., ‘A tropical proof of the Brill-Noether theorem’, Adv. Math. 230 (2012), 759–776.Google Scholar | DOI

[22] Coppens, M. and Martens, G., ‘Linear series on a general k-gonal curve’, in Abhandlungen aus dem mathematischen Seminar der Universität Hamburg [Treatises from the mathematical seminar of the University of Hamburg], vol. 69 (Springer, 1999), 347–371.Google Scholar

[23] Coppens, M. and Martens, G., ‘On the varieties of special divisors’, Indag. Math. 13 (2002), 29–45.Google Scholar | DOI

[24] Cox, D. A., Little, J. B. and Schenck, H. K., ‘Toric varieties’, Grad. Stud. Math. 124 (2011), 575.Google Scholar

[25] Cox, D. A., ‘The functor of a smooth toric variety’, Tohoku Math. J. (2) 47 (1995), no. 2, 251–262.Google Scholar | DOI

[26] Edidin, D., ‘Brill-Noether theory in codimension-two’, J. Algebr. Geom. 2 (1993), 25–67.Google Scholar

[27] Eisenbud, D. and Harris, J., ‘Limit linear series: basic theory’, Invent. Math. 85 (1986), 337–371.Google Scholar | DOI

[28] Farkas, G., ‘Regular components of moduli spaces of stable maps’, Proc. Amer. Math. Soc. 131 (2003), 2027–2036.Google Scholar | DOI

[29] Griffiths, P. and Harris, J., ‘On the variety of special linear systems on a general algebraic curve’, Duke Math. J . 47 (1980), 233–272.Google Scholar | DOI

[30] Gross, M. and Siebert, B., ‘Logarithmic Gromov-Witten invariants’, J. Amer. Math. Soc. 26 (2013), 451–510.Google Scholar | DOI

[31] Gubler, W., ‘Tropical varieties for non-Archimedean analytic spaces’, Invent. Math. 169 (2007), 321–376.Google Scholar | DOI

[32] Jensen, D. and Payne, S., ‘Tropical independence I: shapes of divisors and a proof of the Gieseker-Petri theorem’, Algebra Number Theory 8 (2014), 2043–2066.Google Scholar | DOI

[33] Jensen, D. and Payne, S., ‘Tropical independence, II: the maximal rank conjecture for quadrics’, Algebra Number Theory 10 (2016), 1601–1640.Google Scholar | DOI

[34] Jensen, D. and Payne, S., ‘Combinatorial and inductive methods for the tropical maximal rank conjecture’, J. Combin. Theory Ser. A 152 (2017), 138–158.Google Scholar | DOI

[35] Katz, E., ‘Lifting tropical curves in space and linear systems on graphs’, Adv. Math. 230 (2012), 853–875.Google Scholar | DOI

[36] Kempf, G., ‘Schubert methods with an application to algebraic curves’, Zuivere Wiskunde (1971), 1–18.Google Scholar

[37] Kleiman, S. L. and Laksov, D., ‘On the existence of special divisors’, Amer. J. Math. 94 (1972), 431–436.Google Scholar | DOI

[38] Larson, H., ‘A refined Brill-Noether theory over Hurwitz spaces’, (2019), arXiv:1907.08597v2.Google Scholar | DOI

[39] Lazarsfeld, R., ‘Brill-Noether-Petri without degenerations’, J. Differ. Geom. 23 (1986), 299–307.Google Scholar | DOI

[40] Luo, Y. and Manjunath, M., ‘Smoothing of limit linear series of rank one on saturated metrized complexes of algebraic curves’, Can. J. Math . 70 (2018), 628–682.Google Scholar | DOI

[41] Mikhalkin, G., ‘Enumerative tropical geometry in , J. Amer. Math. Soc . 18 (2005), 313–377.Google Scholar | DOI

[42] Nishinou, T., ‘Describing tropical curves via algebraic geometry’. 2015, arXiv:1503.06435.Google Scholar

[43] Nishinou, T. and Siebert, B., ‘Toric degenerations of toric varieties and tropical curves’, Duke Math. J. 135 (2006), 1–51.Google Scholar | DOI

[44] Osserman, B. and Payne, S., ‘Lifting tropical intersections’, Doc. Math. 18 (2013), 121–175.Google Scholar

[45] Pflueger, N., ‘On linear series with negative Brill-Noether number’. 2013, arXiv:1311.5845v1.Google Scholar

[46] Pflueger, N., ‘Brill-Noether varieties of k-gonal curves’, Adv. Math. 312 (2017), 46–63.Google Scholar | DOI

[47] Pflueger, N., ‘Special divisors on marked chains of cycles’, J. Combin. Theory Ser. A 150 (2017), 182–207.Google Scholar | DOI

[48] Ranganathan, D., ‘Superabundant curves and the Artin fan’, Int. Math. Res. Not. 4 (2016), 1103–1115.Google Scholar

[49] Ranganathan, D., ‘Skeletons of stable maps II: superabundant geometries’, Res. Math. Sci. 4 (2017), 11.Google Scholar | DOI

[50] Ranganathan, D., Santos-Parker, K. and Wise, J., ‘Moduli of stable maps in genus one and logarithmic geometry, II’, Algebra Number Theory 13 (2019), 1765–1805.Google Scholar | DOI

[51] Speyer, D. E., ‘Parameterizing tropical curves. I: curves of genus zero and one’, Algebra Number Theory 8 (2014), 963–998.Google Scholar | DOI

[52] Thuillier, A., ‘Géométrie toroïdale et géométrie analytique non Archimédienne. Application au type d’homotopie de certains schémas formels’ [Toroidal geometry and non-Archimedean analytical geometry. Application to the type of homotopy of certain formal patterns’], Manuscripta Math. 123 (2007), 381–451.Google Scholar | DOI

[53] Ulirsch, M., ‘Tropical compactification in log-regular varieties’, Math. Z. 280 (2015), 195–210.Google Scholar | DOI

[54] Ulirsch, M., ‘Non-Archimedean geometry of Artin fans’, Adv. Math. 345 (2019), 346–381.Google Scholar | DOI

[55] Vakil, R., ‘Murphy’s law in algebraic geometry: badly-behaved deformation spaces’, Invent. Math. 164 (2006), 569–590.Google Scholar | DOI

[56] Wise, J., ‘Local model of virtual fundamental cycle’. URL: http://mathoverflow.net/q/122086.Google Scholar

Cité par Sources :