Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_13,
     author = {Elden Elmanto and Marc Hoyois and Adeel A. Khan and Vladimir Sosnilo and Maria Yakerson},
     title = {Modules over algebraic cobordism},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.13/}
}
                      
                      
                    TY - JOUR AU - Elden Elmanto AU - Marc Hoyois AU - Adeel A. Khan AU - Vladimir Sosnilo AU - Maria Yakerson TI - Modules over algebraic cobordism JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.13/ DO - 10.1017/fmp.2020.13 LA - en ID - 10_1017_fmp_2020_13 ER -
%0 Journal Article %A Elden Elmanto %A Marc Hoyois %A Adeel A. Khan %A Vladimir Sosnilo %A Maria Yakerson %T Modules over algebraic cobordism %J Forum of Mathematics, Pi %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.13/ %R 10.1017/fmp.2020.13 %G en %F 10_1017_fmp_2020_13
Elden Elmanto; Marc Hoyois; Adeel A. Khan; Vladimir Sosnilo; Maria Yakerson. Modules over algebraic cobordism. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.13
[AGP18] , and , ‘Cancellation theorem for framed motives of algebraic varieties’, Preprint, 2018, .Google Scholar | arXiv
[Bar16] , ‘On the algebraic -theory of higher categories’, J. Topol. 9(1) (2016), 245–347.Google Scholar | DOI
[BEH+20] , , , , and , ‘On the infinite loop spaces of algebraic cobordism and the motivic sphere’, Preprint, 2020, .Google Scholar | arXiv
[BF18] and , ‘On the effectivity of spectra representing motivic cohomology theories’, Preprint, 2018, .Google Scholar | arXiv
[BH20] and , ‘Norms in motivic homotopy theory’, to appear in Astérisque (2020). Preprint at .Google Scholar | arXiv
[BHL17] and , ‘Tannaka duality revisited’, Adv. Math. 316 (2017), 576–612.Google Scholar | DOI
[CD15] and , ‘Integral mixed motives in equal characteristic’, Doc. Math., extra volume: Alexander S. Merkurjev’s Sixtieth Birthday (2015), 145–194.Google Scholar
[CMNN20] , , and , ‘Descent in algebraic -theory and a conjecture of Ausoni–Rognes’, J. Eur. Math. Soc. (JEMS) 22(4) (2020), 1149–1200.Google Scholar | DOI
[Dég18] , ‘Orientation theory in arithmetic geometry’, in -theory, Tata Institute of Fundamental Research Publications, 19 (Hindustan Book Agency, New Delhi, 2018), 241–350. Available at https://protect-eu.mimecast.com/s/8MGZCz6z6tnOn35uKRwK1?domain=bookstore.ams.org.Google Scholar
[DJK20] , and , ‘Fundamental classes in motivic homotopy theory’, to appear in J. Eur. Math. Soc. (JEMS) (2020). Preprint at .Google Scholar | arXiv
[Dru20] , ‘Framed motives of smooth affine pairs’, Preprint, 2020, .Google Scholar | arXiv
[EHK+19] , , , and , ‘Motivic infinite loop spaces’, Preprint, 2019, .Google Scholar | arXiv
[EHK+20] , , , and , ‘Framed transfers and motivic fundamental classes’, J. Topol. 13(2) (2020), 460–500.Google Scholar | DOI
[EK20] and , ‘On modules over motivic ring spectra’, Ann. K-Theory 5(2) (2020), 327–355.Google Scholar | DOI
[GMTW09] , , and , ‘The homotopy type of the cobordism category’, Acta Math. 202(2) (2009), 195–239.Google Scholar | DOI
[GN18] and , ‘Fibrant resolutions for motivic Thom spectra’, Preprint, 2018, .Google Scholar | arXiv
[GNP18] , and , ‘Framed motives of relative motivic spheres’, Preprint, 2018, .Google Scholar | arXiv
[GP20a] and , ‘Framed motives of algebraic varieties (after V. Voevodsky)’, to appear in J. Amer. Math. Soc. (2020). Preprint at .Google Scholar | arXiv
[GP20b] and , ‘Homotopy invariant presheaves with framed transfers’, Camb. J. Math. 8(1) (2020), 1–94.Google Scholar | DOI
[Gro67] , Éléments de Géométrie Algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, Publ. Math. I.H.É.S. 32 (1967). Available at https://protect-eu.mimecast.com/s/W7FNCA6l6tVGVgkiQpapc?domain=numdam.org.Google Scholar
[Gru72] , Une propriété des couples henséliens, Colloque d’algèbre commutative, exp. no 10, Publications des séminaires de mathématiques et informatique de Rennes, 1972. Available at https://protect-eu.mimecast.com/s/FgLkCBrmrSAzA1YU1oJRb?domain=numdam.org.Google Scholar
[Hau18] , ‘Iterated spans and classical topological field theories’, Math. Z. 289(3) (2018), 1427–1488.Google Scholar | DOI
[Hoy20] , ‘The localization theorem for framed motivic spaces’, to appear in Compos. Math. (2020). Preprint at .Google Scholar | arXiv
[Kha16] , ‘Motivic homotopy theory in derived algebraic geometry’, Ph.D. thesis, Universität Duisburg-Essen, 2016. Available at https://www.preschema.com/thesis/thesis.pdf.Google Scholar
[KR19] and , ‘Virtual Cartier divisors and blow-ups’, Preprint, 2019, .Google Scholar | arXiv
[LM07] and , Algebraic Cobordism (Springer, Location, 2007).Google Scholar
[LS16] and , ‘Derived algebraic cobordism’, J. Inst. Math. Jussieu 15 (2016), 407–443.Google Scholar | DOI
[Lur04] , ‘Derived Algebraic Geometry’, Ph.D. thesis, Massachusetts Institute of Technology, 2004. Available at https://www.math.ias.edu/~lurie/papers/DAG.pdf.Google Scholar
[Lur09] , ‘ -categories and the Goodwillie calculus I’, unpublished paper (2009). URL: https://www.math.ias.edu/~lurie/papers/GoodwillieI.pdf.Google Scholar
[Lur17a] , ‘Higher algebra’, unpublished paper (2017). URL: https://www.math.ias.edu/~lurie/papers/HA.pdf.Google Scholar
[Lur17b] , ‘Higher topos theory’, unpublished paper (2017). URL: https://www.math.ias.edu/~lurie/papers/HTT.pdf.Google Scholar
[Lur18] , ‘Spectral algebraic geometry’, unpublished paper (2018). URL: https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf.Google Scholar
[Nav16] , ‘Riemann–Roch for homotopy invariant -theory and Gysin morphisms’, Preprint, 2016, .Google Scholar | arXiv
[Nik17] , ‘The group completion theorem via localizations of ring spectra’, unpublished paper (2017). URL: https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/papers.html.Google Scholar
[Pan09] , ‘Oriented cohomology theories of algebraic varieties II’, Homology Homotopy Appl. 11(1) (2009), 349–405.Google Scholar | DOI
[Qui71] , ‘Elementary proofs of some results of cobordism theory using Steenrod operations’, Adv. Math. 7(1) (1971), 29–56.Google Scholar | DOI
[Rap19] , ‘Some characterizations of acyclic maps’, J. Homotopy Relat. Struct. 14 (2019), 773–785.Google Scholar | DOI
[Rö08] and , ‘Modules over motivic cohomology’, Adv. Math. 219(2) (2008), 689–727.Google Scholar | DOI
[RW13] , ‘“Group-completion”, local coefficient systems and perfection’, Q. J. Math. 64(3) (2013), 795–803.Google Scholar | DOI
[Ryd15] , ‘Noetherian approximation of algebraic spaces and stacks’, J. Algebra 422 (2015), 105–147.Google Scholar | DOI
[Spi18] , ‘A commutative -spectrum representing motivic cohomology over Dedekind domains’, Mém. Soc. Math. Fr. 157 (2018).Google Scholar
[Stacks] The Stacks Project Authors, ‘The Stacks Project’, URL: http://stacks.math.columbia.edu.Google Scholar
[TV08] and , ‘Homotopical Algebraic Geometry. II: Geometric stacks and applications’, Mem. Amer. Math. Soc. 193(902) (2008).Google Scholar
[Voe01] , ‘Notes on framed correspondences’, unpublished paper (2001). URL: http://www.math.ias.edu/vladimir/files/framed.pdf.Google Scholar
[Yak19] , ‘Motivic stable homotopy groups via framed correspondences’, Ph.D. thesis, University of Duisburg-Essen, 2019. Available at https://duepublico2.uni-due.de/receive/duepublico_mods_00070044?q=iakerson.Google Scholar
Cité par Sources :
