Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_12,
     author = {Dilip Raghavan and Stevo Todorcevic},
     title = {Proof of a conjecture of {Galvin}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.12/}
}
                      
                      
                    Dilip Raghavan; Stevo Todorcevic. Proof of a conjecture of Galvin. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.12
[1] , ‘Partition relations for countable topological spaces’, J. Combin. Theory Ser. A 43(2) (1986), 178–195.Google Scholar | DOI
[2] , ‘Sur la classification des ensembles de mesure nulle’, Bull. Soc. Math. France 47 (1919), 97–125.Google Scholar | DOI
[3] , Some Partition Theorems and Ultrafilters on , Ph.D. thesis, Dartmouth College, Ann Arbor, MI, 1980.Google Scholar
[4] and , ‘Models of axiomatic theories admitting automorphisms’, Fund. Math. 43 (1956), 50–68.Google Scholar | DOI
[5] and , ‘Combinatorial theorems on classifications of subsets of a given set’, Proc. Lond. Math. Soc. (3) 2 (1952), 417–439.Google Scholar | DOI
[6] , ‘Left separated spaces with point-countable bases’, Trans. Amer. Math. Soc. 294(2) (1986), 665–677.Google Scholar | DOI
[7] , Ideals and Generic Elementary Embeddings, Handbook of Set Theory, Vol. 2 (Springer, Dordrecht, 2010), 885–1147.Google Scholar | DOI
[8] , and , ‘Martin’s maximum, saturated ideals, and nonregular ultrafilters, I’, Ann. of Math. (2) 127(1) (1988), 1–47.Google Scholar | DOI
[9] , Letter to R. Laver (March 19, 1970).Google Scholar
[10] and , ‘A Ramsey-type topological theorem’, Topology Appl. 125(2) (2002), 343–355.Google Scholar | DOI
[11] , Some problems about scattered spaces, Séminaire d’Initiation à~l’Analyse, Publ. Math. Univ. Pierre et Marie Curie, vol. 95, Univ. Paris VI, Paris, 1989/1990, pp. Exp. No. 9, 10.Google Scholar
[12] , Set Theory, third millennium edn., revised and expanded, Springer Monogr. Math. (Springer-Verlag, Berlin, 2003).Google Scholar
[13] and , ‘ without the measurable’, J. Symb. Log. 78(3) (2013), 708–734.Google Scholar | DOI
[14] , The Higher Infinite, second ed., Springer Monogr. Math. (Springer-Verlag, Berlin, 2009), Large cardinals in set theory from their beginnings, MathsciNet, Paperback reprint of the 2003 edition.Google Scholar
[15] , and , ‘Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups’, Geom. Funct. Anal. 15(1) (2005), 106–189.Google Scholar | DOI
[16] , The Stationary Tower, Univ. Lecture Ser., 32 (American Mathematical Society, Providence, RI, 2004), Notes on a course by W. Hugh Woodin.Google Scholar
[17] , ‘On the consistency of Borel’s conjecture’, Acta Math. 137(3-4) (1976), 151–169.Google Scholar | DOI
[18] , ‘How large is the first strongly compact cardinal? or A study on identity crises’, Ann. Math. Logic 10(1) (1976), 33–57.Google Scholar | DOI
[19] and , ‘Galvin’s problem in higher dimension’, In preparation.Google Scholar
[20] , ‘On a problem of formal logic’, Proc. Lond. Math. Soc. (2) 30(4) (1929), 264–286.Google Scholar
[21] , ‘Strong partition relations below the power set: Consistency; was Sierpiński right? II’, in Sets, Graphs and Numbers (Budapest, 1991), Colloquia Mathematica Societatis János Bolyai, 60 (North-Holland, Amsterdam, 1992), 637–668.Google Scholar
[22] , ‘Was Sierpiński right? IV’, J. Symb. Log. 65(3) (2000), 1031–1054.Google Scholar | DOI
[23] , ‘Sur une problème de la théorie des relations’, Ann. Sc. Norm. Super. Pisa (2) 2 (1933), 239–242.Google Scholar
[24] , ‘Partition relations for partially ordered sets’, Acta Math. 155(1-2) (1985), 1–25.Google Scholar | DOI
[25] , ‘Partitioning pairs of countable ordinals’, Acta Math. 159(3-4) (1987), 261–294.Google Scholar | DOI
[26] , ‘A partition property of spaces with point-countable bases’, Unpublished notes (June 1996).Google Scholar
[27] , ‘A dichotomy for P-ideals of countable sets’, Fund. Math. 166(3) (2000), 251–267.Google Scholar | DOI
[28] , ‘Universally meager sets and principles of generic continuity and selection in Banach spaces’, Adv. Math. 208(1) (2007), 274–298.Google Scholar | DOI
[29] , Introduction to Ramsey Spaces, Ann. of Math. Stud., 174 (Princeton University Press, Princeton, NJ, 2010).Google Scholar
[30] and , ‘Partitioning metric spaces’, Unpublished manuscript (September 1995).Google Scholar
[31] , ‘ and guessing models’, Israel J. Math. 215(2) (2016), 607–667.Google Scholar | DOI
[32] , ‘Supercompact cardinals, sets of reals, and weakly homogeneous trees’, Proc. Natl. Acad. Sci. USA 85(18) (1988), 6587–6591.Google ScholarPubMed | DOI
[33] , The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter Series in Logic and its Applications, 1 (Walter de Gruyter & Co., Berlin, 1999).Google Scholar
Cité par Sources :
