Proof of a conjecture of Galvin
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that if the set of unordered pairs of real numbers is coloured by finitely many colours, there is a set of reals homeomorphic to the rationals whose pairs have at most two colours. Our proof uses large cardinals and verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals.
@article{10_1017_fmp_2020_12,
     author = {Dilip Raghavan and Stevo Todorcevic},
     title = {Proof of a conjecture of {Galvin}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.12/}
}
TY  - JOUR
AU  - Dilip Raghavan
AU  - Stevo Todorcevic
TI  - Proof of a conjecture of Galvin
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.12/
DO  - 10.1017/fmp.2020.12
LA  - en
ID  - 10_1017_fmp_2020_12
ER  - 
%0 Journal Article
%A Dilip Raghavan
%A Stevo Todorcevic
%T Proof of a conjecture of Galvin
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.12/
%R 10.1017/fmp.2020.12
%G en
%F 10_1017_fmp_2020_12
Dilip Raghavan; Stevo Todorcevic. Proof of a conjecture of Galvin. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.12

[1] Baumgartner, J. E., ‘Partition relations for countable topological spaces’, J. Combin. Theory Ser. A 43(2) (1986), 178–195.Google Scholar | DOI

[2] Borel, E., ‘Sur la classification des ensembles de mesure nulle’, Bull. Soc. Math. France 47 (1919), 97–125.Google Scholar | DOI

[3] Devlin, D. C., Some Partition Theorems and Ultrafilters on , Ph.D. thesis, Dartmouth College, Ann Arbor, MI, 1980.Google Scholar

[4] Ehrenfeucht, A. and Mostowski, A., ‘Models of axiomatic theories admitting automorphisms’, Fund. Math. 43 (1956), 50–68.Google Scholar | DOI

[5] Erdős, P. and Rado, R., ‘Combinatorial theorems on classifications of subsets of a given set’, Proc. Lond. Math. Soc. (3) 2 (1952), 417–439.Google Scholar | DOI

[6] Fleissner, W. G., ‘Left separated spaces with point-countable bases’, Trans. Amer. Math. Soc. 294(2) (1986), 665–677.Google Scholar | DOI

[7] Foreman, M., Ideals and Generic Elementary Embeddings, Handbook of Set Theory, Vol. 2 (Springer, Dordrecht, 2010), 885–1147.Google Scholar | DOI

[8] Foreman, M., Magidor, M. and Shelah, S., ‘Martin’s maximum, saturated ideals, and nonregular ultrafilters, I’, Ann. of Math. (2) 127(1) (1988), 1–47.Google Scholar | DOI

[9] Galvin, F., Letter to R. Laver (March 19, 1970).Google Scholar

[10] Gerlits, J. and Szentmiklóssy, Z., ‘A Ramsey-type topological theorem’, Topology Appl. 125(2) (2002), 343–355.Google Scholar | DOI

[11] Haydon, R., Some problems about scattered spaces, Séminaire d’Initiation à~l’Analyse, Publ. Math. Univ. Pierre et Marie Curie, vol. 95, Univ. Paris VI, Paris, 1989/1990, pp. Exp. No. 9, 10.Google Scholar

[12] Jech, T., Set Theory, third millennium edn., revised and expanded, Springer Monogr. Math. (Springer-Verlag, Berlin, 2003).Google Scholar

[13] Jensen, R. and Steel, J., ‘ without the measurable’, J. Symb. Log. 78(3) (2013), 708–734.Google Scholar | DOI

[14] Kanamori, A., The Higher Infinite, second ed., Springer Monogr. Math. (Springer-Verlag, Berlin, 2009), Large cardinals in set theory from their beginnings, MathsciNet, Paperback reprint of the 2003 edition.Google Scholar

[15] Kechris, A. S., Pestov, V. G. and Todorcevic, S., ‘Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups’, Geom. Funct. Anal. 15(1) (2005), 106–189.Google Scholar | DOI

[16] Larson, P. B., The Stationary Tower, Univ. Lecture Ser., 32 (American Mathematical Society, Providence, RI, 2004), Notes on a course by W. Hugh Woodin.Google Scholar

[17] Laver, R., ‘On the consistency of Borel’s conjecture’, Acta Math. 137(3-4) (1976), 151–169.Google Scholar | DOI

[18] Magidor, M., ‘How large is the first strongly compact cardinal? or A study on identity crises’, Ann. Math. Logic 10(1) (1976), 33–57.Google Scholar | DOI

[19] Raghavan, D. and Todorcevic, S., ‘Galvin’s problem in higher dimension’, In preparation.Google Scholar

[20] Ramsey, F. P., ‘On a problem of formal logic’, Proc. Lond. Math. Soc. (2) 30(4) (1929), 264–286.Google Scholar

[21] Shelah, S., ‘Strong partition relations below the power set: Consistency; was Sierpiński right? II’, in Sets, Graphs and Numbers (Budapest, 1991), Colloquia Mathematica Societatis János Bolyai, 60 (North-Holland, Amsterdam, 1992), 637–668.Google Scholar

[22] Shelah, S., ‘Was Sierpiński right? IV’, J. Symb. Log. 65(3) (2000), 1031–1054.Google Scholar | DOI

[23] Sierpiński, W., ‘Sur une problème de la théorie des relations’, Ann. Sc. Norm. Super. Pisa (2) 2 (1933), 239–242.Google Scholar

[24] Todorcevic, S., ‘Partition relations for partially ordered sets’, Acta Math. 155(1-2) (1985), 1–25.Google Scholar | DOI

[25] Todorcevic, S., ‘Partitioning pairs of countable ordinals’, Acta Math. 159(3-4) (1987), 261–294.Google Scholar | DOI

[26] Todorcevic, S., ‘A partition property of spaces with point-countable bases’, Unpublished notes (June 1996).Google Scholar

[27] Todorcevic, S., ‘A dichotomy for P-ideals of countable sets’, Fund. Math. 166(3) (2000), 251–267.Google Scholar | DOI

[28] Todorcevic, S., ‘Universally meager sets and principles of generic continuity and selection in Banach spaces’, Adv. Math. 208(1) (2007), 274–298.Google Scholar | DOI

[29] Todorcevic, S., Introduction to Ramsey Spaces, Ann. of Math. Stud., 174 (Princeton University Press, Princeton, NJ, 2010).Google Scholar

[30] Todorcevic, S. and Weiss, W., ‘Partitioning metric spaces’, Unpublished manuscript (September 1995).Google Scholar

[31] Trang, N., ‘ and guessing models’, Israel J. Math. 215(2) (2016), 607–667.Google Scholar | DOI

[32] Woodin, W. H., ‘Supercompact cardinals, sets of reals, and weakly homogeneous trees’, Proc. Natl. Acad. Sci. USA 85(18) (1988), 6587–6591.Google ScholarPubMed | DOI

[33] Woodin, W. H., The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruyter Series in Logic and its Applications, 1 (Walter de Gruyter & Co., Berlin, 1999).Google Scholar

Cité par Sources :