GLOBAL NEARLY-PLANE-SYMMETRIC SOLUTIONS TO THE MEMBRANE EQUATION
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that any simple planar travelling wave solution to the membrane equation in spatial dimension $d\geqslant 3$ with bounded spatial extent is globally nonlinearly stable under sufficiently small compactly supported perturbations, where the smallness depends on the size of the support of the perturbation as well as on the initial travelling wave profile. The main novelty of the argument is the lack of higher order peeling in our vector-field-based method. In particular, the higher order energies (in fact, all energies at order $2$ or higher) are allowed to grow polynomially (but in a controlled way) in time. This is in contrast with classical global stability arguments, where only the ‘top’ order energies used in the bootstrap argument exhibit growth, and reflects the fact that the background travelling wave solution has ‘infinite energy’ and the coefficients of the perturbation equation are not asymptotically Lorentz invariant. Nonetheless, we can prove that the perturbation converges to zero in $C^{2}$ by carefully analysing the nonlinear interactions and exposing a certain ‘vestigial’ null structure in the equations.
@article{10_1017_fmp_2020_10,
     author = {LEONARDO ABBRESCIA and WILLIE WAI YEUNG WONG},
     title = {GLOBAL {NEARLY-PLANE-SYMMETRIC} {SOLUTIONS} {TO} {THE} {MEMBRANE} {EQUATION}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.10/}
}
TY  - JOUR
AU  - LEONARDO ABBRESCIA
AU  - WILLIE WAI YEUNG WONG
TI  - GLOBAL NEARLY-PLANE-SYMMETRIC SOLUTIONS TO THE MEMBRANE EQUATION
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.10/
DO  - 10.1017/fmp.2020.10
LA  - en
ID  - 10_1017_fmp_2020_10
ER  - 
%0 Journal Article
%A LEONARDO ABBRESCIA
%A WILLIE WAI YEUNG WONG
%T GLOBAL NEARLY-PLANE-SYMMETRIC SOLUTIONS TO THE MEMBRANE EQUATION
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.10/
%R 10.1017/fmp.2020.10
%G en
%F 10_1017_fmp_2020_10
LEONARDO ABBRESCIA; WILLIE WAI YEUNG WONG. GLOBAL NEARLY-PLANE-SYMMETRIC SOLUTIONS TO THE MEMBRANE EQUATION. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.10

[AAI06] Allen, P., Andersson, L. and Isenberg, J., ‘Timelike minimal submanifolds of general co-dimension in Minkowski space time’, J. Hyperbolic Differ. Equ. 3(4) (2006), 691–700.Google Scholar | DOI

[Ali01a] Alinhac, S., ‘The null condition for quasilinear wave equations in two space dimensions. I’, Invent. Math. 145(3) (2001), 597–618.Google Scholar | DOI

[Ali01b] Alinhac, S., ‘The null condition for quasilinear wave equations in two space dimensions. II’, Amer. J. Math. 123(6) (2001), 1071–1101.Google Scholar | DOI

[Ali03] Alinhac, S., ‘An example of blowup at infinity for a quasilinear wave equation’, Astérisque (284) (2003), 1–91. Autour de l’analyse microlocale.Google Scholar

[AC79] Aurilia, A. and Christodoulou, D., ‘Theory of strings and membranes in an external field. I. General formulation’, J. Math. Phys. 20(7) (1979), 1446–1452.Google Scholar | DOI

[Bre02] Brendle, S., ‘Hypersurfaces in Minkowski space with vanishing mean curvature’, Comm. Pure Appl. Math. 55(10) (2002), 1249–1279.Google Scholar | DOI

[CB76] Choquet-Bruhat, Y., ‘Maximal submanifolds and submanifolds with constant mean extrinsic curvature of a Lorentzian manifold’, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 3(3) (1976), 361–376.Google Scholar

[Chr07] Christodoulou, D., The Formation of Shocks in 3-dimensional Fluids, EMS Monographs in Mathematics (European Mathematical Society (EMS), Zürich, 2007).Google Scholar | DOI

[DP18] Deng, Y. and Pusateri, F., ‘On the global behavior of weak null quasilinear wave equations’, Comm. Pure Appl. Math. 73 (2020), 1035–1099.Google Scholar | DOI

[DKSW16] Donninger, R., Krieger, J., Szeftel, J. and Wong, W. W.-Y., ‘Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space’, Duke Math. J. 165 (2016), 723–791.Google Scholar | DOI

[HKSW16] Holzegel, G., Klainerman, S., Speck, J. R. and Wong, W. W.-Y., ‘Shock formation in small-data solutions to 3D quasilinear wave equations: an overview’, J. Hyperbolic Differ. Equ. 13(1) (2016), 1–105.Google Scholar | DOI

[Hop13] Hoppe, J., ‘Relativistic membranes’, J. Phys. A 46(2) (2013), 023001, 30.Google Scholar

[Jer11] Jerrard, R., ‘Defects in semilinear wave equation and timelike minimal surfaces in Minkowski space’, Anal. PDE 4 (2011), 285–340.Google Scholar

[JNO15] Jerrard, R., Novaga, M. and Orlandi, G., ‘On the regularity of timelike extremal surfaces’, Commun. Contemp. Math. 17(1) (2015), 1450048.Google Scholar | DOI

[Joh74] John, F., ‘Formation of singularities in one-dimensional nonlinear wave propagation’, Comm. Pure Appl. Math. 27 (1974), 377–405.Google Scholar | DOI

[Kib76] Kibble, T., ‘Topology of cosmic domains and strings’, J. Phys. A 9 (1976), 1387–1398.Google Scholar | DOI

[Kla80] Klainerman, S., ‘Global existence for nonlinear wave equations’, Comm. Pure Appl. Math. 33(1) (1980), 43–101.Google Scholar | DOI

[Kla82] Klainerman, S., ‘Long-time behavior of solutions to nonlinear evolution equations’, Arch. Ration. Mech. Anal. 78(1) (1982), 73–98.Google Scholar | DOI

[Kla84] Klainerman, S., ‘Long time behaviour of solutions to nonlinear wave equations’, inProceedings of the International Congress of Mathematicians, Vols 1, 2 (Warsaw, 1983) (PWN, Warsaw, 1984), 1209–1215.Google Scholar

[Kla85] Klainerman, S., ‘Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions’, Comm. Pure Appl. Math. 38(5) (1985), 631–641.Google Scholar | DOI

[Lax64] Lax, P. D., ‘Development of singularities of solutions of nonlinear hyperbolic partial differential equations’, J. Math. Phys. 5 (1964), 611–613.Google Scholar | DOI

[Lax73] Lax, P. D., ‘Hyperbolic systems of conservation laws and the mathematical theory of shock waves’, inSociety for Industrial and Applied Mathematics, Philadelphia, PA, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, 11 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973).Google Scholar

[LM14] Lefloch, P. G. and Ma, Y., The Hyperboloidal Foliation Method, Series in Applied and Computational Mathematics, 2 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014).Google Scholar

[Lin04] Lindblad, H., ‘A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time’, Proc. Amer. Math. Soc. 132(4) (2004), 1095–1102 (electronic).Google Scholar | DOI

[Lin08] Lindblad, H., ‘Global solutions of quasilinear wave equations’, Amer. J. Math. 130(1) (2008), 115–157.Google Scholar | DOI

[LR05] Lindblad, H. and Rodnianski, I., ‘Global existence for the Einstein vacuum equations in wave coordinates’, Comm. Math. Phys. 256(1) (2005), 43–110.Google Scholar | DOI

[LZ19] Liu, J. and Zhou, Y., ‘Uniqueness and stability of traveling waves to the time-like extremal hypersurface in Minkowski space’. Preprint, 2019, .Google Scholar

[LS18] Luk, J. and Speck, J., ‘Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity’, Invent. Math. 214(1) (2018), 1–169.Google Scholar | DOI

[Mil08] Milbredt, O., ‘The Cauchy problem for membranes’, PhD Thesis, Freien Universität Berlin, 2008.Google Scholar

[Neu90] Neu, J. C., ‘Kinks and the minimal surface equation in Minkowski space’, Physica D 43 (1990), 421–434.Google Scholar

[NT13] Nguyen, L. and Tian, G., ‘On smoothness of timelike maximal cylinders in three-dimensional vacuum spacetimes’, Classical Quantum Gravity 30(16)165010 (2013).Google Scholar | DOI

[Sha10] Shatah, J., ‘Space-time resonances’, Quart. Appl. Math. 68(1) (2010), 161–167.Google Scholar | DOI

[SM50] Sherman, J. and Morrison, W. J., ‘Adjustment of an inverse matrix corresponding to a change in one element of a given matrix’, Ann. Math. Stat. 21 (1950), 124–127.Google Scholar | DOI

[Sid89] Sideris, T. C., ‘Global existence of harmonic maps in Minkowski space’, Comm. Pure Appl. Math. 42(1) (1989), 1–13.Google Scholar | DOI

[Spe16] Speck, J., Shock Formation in Small-data Solutions to 3D Quasilinear Wave Equations, Mathematical Surveys and Monographs, 214 (American Mathematical Society, Providence, RI, 2016).Google Scholar | DOI

[SHLW16] Speck, J., Holzegel, G., Luk, J. and Wong, W. W.-Y., ‘Stable shock formation for nearly simple outgoing plane symmetric waves’, Ann. PDE 2 (2016), 10.Google Scholar | DOI

[VS94] Vilenkin, A. and Shellard, E. P. S., Cosmic Strings and Other Topological Defects, (Cambridge University Press, Cambridge, UK, 1994).Google Scholar

[WW17] Wang, J. and Wei, C., ‘Global existence of smooth solution to relativistic membrane equation with large data’. Preprint, 2017, .Google Scholar

[Won17a] Wong, W. W.-Y., ‘Global existence for the minimal surface equation on ℝ1, 1’, Proc. Amer. Math. Soc., Ser. B 4 (2017), 47–52.Google Scholar | DOI

[Won17b] Wong, W. W. Y., (2017), ‘Small data global existence and decay for two dimensional wave maps’. Preprint, 2017, (Under review).Google Scholar

[Won18] Wong, W. W. Y., ‘Singularities of axially symmetric time-like minimal submanifolds in Minkowski space’, J. Hyperbolic Differ. Equ. 15(1) (2018), 1–13.Google Scholar | DOI

Cité par Sources :