SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$-arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $p$. This is a generalization to $\text{GL}_{3}$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $n$-dimensional Galois representations’, Duke Math. J. 149(1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212(1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $\text{GL}_{3}(\mathbb{F}_{q})$.
@article{10_1017_fmp_2020_1,
     author = {DANIEL LE and BAO V. LE HUNG and BRANDON LEVIN and STEFANO MORRA},
     title = {SERRE {WEIGHTS} {AND} {BREUIL{\textquoteright}S} {LATTICE} {CONJECTURE} {IN} {DIMENSION} {THREE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.1/}
}
TY  - JOUR
AU  - DANIEL LE
AU  - BAO V. LE HUNG
AU  - BRANDON LEVIN
AU  - STEFANO MORRA
TI  - SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.1/
DO  - 10.1017/fmp.2020.1
LA  - en
ID  - 10_1017_fmp_2020_1
ER  - 
%0 Journal Article
%A DANIEL LE
%A BAO V. LE HUNG
%A BRANDON LEVIN
%A STEFANO MORRA
%T SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.1/
%R 10.1017/fmp.2020.1
%G en
%F 10_1017_fmp_2020_1
DANIEL LE; BAO V. LE HUNG; BRANDON LEVIN; STEFANO MORRA. SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.1

[Alp86] Alperin, J. L., ‘Modular representations as an introduction to the local representation theory of finite groups’, inLocal Representation Theory, Cambridge Studies in Advanced Mathematics, 11 (Cambridge University Press, Cambridge, 1986).Google Scholar | DOI

[AM01] Andersen, H. H. and Masaharu, K., ‘Filtrations on G T-modules’, Proc. Lond. Math. Soc. (3) 82(3) (2001), 614–646.Google Scholar | DOI

[And87] Andersen, H. H., ‘Extensions of simple modules for finite Chevalley groups’, J. Algebra 111(2) (1987), 388–403.Google Scholar | DOI

[BDM15] Bowman, C., Doty, S. R. and Martin, S., ‘Decomposition of tensor products of modular irreducible representations for SL : the p⩾5 case’, Int. Electron. J. Algebra 17 (2015), 105–138.Google Scholar | DOI

[BP13] Breuil, C. and Paskunas, V., ‘Towards a modulo p Langlands correspondence for ’, Mem. Amer. Math. Soc. 216 (2012), no. 1016, vi+114 pp.Google Scholar

[Bre14] Breuil, C., ‘Sur un problème de compatibilité local-global modulo p pour GL’, J. Reine Angew. Math. 692 (2014), 1–76.Google Scholar | DOI

[Cal18] Calegari, F., ‘Non-minimal modularity lifting in weight one’, J. Reine Angew. Math. 740 (2018), 41–62.Google Scholar | DOI

[CDT99] Conrad, B., Diamond, F. and Taylor, R., ‘Modularity of certain potentially Barsotti–Tate Galois representations’, J. Amer. Math. Soc. 12(2) (1999), 521–567.Google Scholar | DOI

[CEG+16] Caraiani, A., Emerton, M., Gee, T., Geraghty, D., Paskūnas, V. and Shin, S. W., ‘Patching and the p-adic local Langlands correspondence’, Camb. J. Math. 4(2) (2016), 197–287.Google Scholar | DOI

[CHT08] Clozel, L., Harris, M. and Taylor, R., ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.Google Scholar | DOI

[CL18] Caraiani, A. and Levin, B., ‘Kisin modules with descent data and parahoric local models’, Ann. Sci. Éc. Norm. Supér. (4) 51(1) (2018), 181–213.Google Scholar | DOI

[Dia97] Diamond, F., ‘The Taylor–Wiles construction and multiplicity one’, Invent. Math. 128(2) (1997), 379–391.Google Scholar | DOI

[DL76] Deligne, P. and Lusztig, G., ‘Representations of reductive groups over finite fields’, Ann. of Math. (2) 103(1) (1976), 103–161.Google Scholar | DOI

[EG14] Emerton, M. and Gee, T., ‘A geometric perspective on the Breuil–Mézard conjecture’, J. Inst. Math. Jussieu 13(1) (2014), 183–223.Google Scholar | DOI

[EGH13] Emerton, M., Gee, T. and Herzig, F., ‘Weight cycling and Serre-type conjectures for unitary groups’, Duke Math. J. 162(9) (2013), 1649–1722.Google Scholar | DOI

[EGS15] Emerton, M., Gee, T. and Savitt, D., ‘Lattices in the cohomology of Shimura curves’, Invent. Math. 200(1) (2015), 1–96.Google Scholar | DOI

[Enn] Enns, J., ‘On weight elimination for GL()’, Math. Res. Lett. 26(1) (2019), 53–66.Google Scholar | DOI

[Gee11] Gee, T., ‘Automorphic lifts of prescribed types’, Math. Ann. 350(1) (2011), 107–144.Google Scholar | DOI

[GHS18] Gee, T., Herzig, F. and Savitt, D., ‘General Serre weight conjectures’, J. Eur. Math. Soc. (JEMS) 20(12) (2018), 2859–2949.Google Scholar | DOI

[Gro65] Grothendieck, A., ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II’, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 231.Google Scholar

[Gue11] Guerberoff, L., ‘Modularity lifting theorems for Galois representations of unitary type’, Compos. Math. 147(4) (2011), 1022–1058.Google Scholar | DOI

[Her09] Herzig, F., ‘The weight in a Serre-type conjecture for tame n-dimensional Galois representations’, Duke Math. J. 149(1) (2009), 37–116.Google Scholar | DOI

[HK04] Hassett, B. and Kovács, S. J., ‘Reflexive pull-backs and base extension’, J. Algebraic Geom. 13(2) (2004), 233–247.Google Scholar | DOI

[HLM17] Herzig, F., Le, D. and Morra, S., ‘On mod p local-global compatibility for GL in the ordinary case’, Compos. Math. 153(11) (2017), 2215–2286.Google Scholar | DOI

[Hum06] Humphreys, J. E., Modular Representations of Finite Groups of Lie Type, London Mathematical Society Lecture Note Series, 326 (Cambridge University Press, Cambridge, 2006).Google Scholar

[Jan03] Jantzen, J. C., Representations of Algebraic Groups, second edn, Mathematical Surveys and Monographs, 107 (American Mathematical Society, Providence, RI, 2003).Google Scholar

[Kis08] Kisin, M., ‘Potentially semi-stable deformation rings’, J. Amer. Math. Soc. 21(2) (2008), 513–546.Google Scholar | DOI

[Le18] Le, D., ‘Lattices in the cohomology of U (3) arithmetic manifolds’, Math. Ann. 372(1–2) (2018), 55–89.Google Scholar | DOI

[LLHL19] Le, D., Le Hung, B. V. and Levin, B., ‘Weight elimination in Serre-type conjectures’, Duke Math. J. 168(13) (2019), 2433–2506.Google Scholar | DOI

[LLHLM18] Le, D., Le Hung, B. V., Levin, B. and Morra, S., ‘Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212(1) (2018), 1–107.Google Scholar | DOI

[Pil93] Pillen, C., ‘Reduction modulo p of some Deligne–Lusztig characters’, Arch. Math. (Basel) 61(5) (1993), 421–433.Google Scholar | DOI

[Pil97] ‘Loewy series for principal series representations of finite Chevalley groups’, J. Algebra 189(1) (1997), 101–124.Google Scholar | DOI

[Sta19] The Stacks Project Authors, Stacks Project, , 2019.Google Scholar

[Tay08] Taylor, R., ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations. II’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183–239.Google Scholar | DOI

Cité par Sources :