Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2020_1,
     author = {DANIEL LE and BAO V. LE HUNG and BRANDON LEVIN and STEFANO MORRA},
     title = {SERRE {WEIGHTS} {AND} {BREUIL{\textquoteright}S} {LATTICE} {CONJECTURE} {IN} {DIMENSION} {THREE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2020.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.1/}
}
                      
                      
                    TY - JOUR AU - DANIEL LE AU - BAO V. LE HUNG AU - BRANDON LEVIN AU - STEFANO MORRA TI - SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.1/ DO - 10.1017/fmp.2020.1 LA - en ID - 10_1017_fmp_2020_1 ER -
%0 Journal Article %A DANIEL LE %A BAO V. LE HUNG %A BRANDON LEVIN %A STEFANO MORRA %T SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE %J Forum of Mathematics, Pi %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2020.1/ %R 10.1017/fmp.2020.1 %G en %F 10_1017_fmp_2020_1
DANIEL LE; BAO V. LE HUNG; BRANDON LEVIN; STEFANO MORRA. SERRE WEIGHTS AND BREUIL’S LATTICE CONJECTURE IN DIMENSION THREE. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2020.1
[Alp86] , ‘Modular representations as an introduction to the local representation theory of finite groups’, inLocal Representation Theory, Cambridge Studies in Advanced Mathematics, 11 (Cambridge University Press, Cambridge, 1986).Google Scholar | DOI
[AM01] and , ‘Filtrations on G T-modules’, Proc. Lond. Math. Soc. (3) 82(3) (2001), 614–646.Google Scholar | DOI
[And87] , ‘Extensions of simple modules for finite Chevalley groups’, J. Algebra 111(2) (1987), 388–403.Google Scholar | DOI
[BDM15] , and , ‘Decomposition of tensor products of modular irreducible representations for SL : the p⩾5 case’, Int. Electron. J. Algebra 17 (2015), 105–138.Google Scholar | DOI
[BP13] and , ‘Towards a modulo p Langlands correspondence for ’, Mem. Amer. Math. Soc. 216 (2012), no. 1016, vi+114 pp.Google Scholar
[Bre14] , ‘Sur un problème de compatibilité local-global modulo p pour GL’, J. Reine Angew. Math. 692 (2014), 1–76.Google Scholar | DOI
[Cal18] , ‘Non-minimal modularity lifting in weight one’, J. Reine Angew. Math. 740 (2018), 41–62.Google Scholar | DOI
[CDT99] , and , ‘Modularity of certain potentially Barsotti–Tate Galois representations’, J. Amer. Math. Soc. 12(2) (1999), 521–567.Google Scholar | DOI
[CEG+16] , , , , and , ‘Patching and the p-adic local Langlands correspondence’, Camb. J. Math. 4(2) (2016), 197–287.Google Scholar | DOI
[CHT08] , and , ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.Google Scholar | DOI
[CL18] and , ‘Kisin modules with descent data and parahoric local models’, Ann. Sci. Éc. Norm. Supér. (4) 51(1) (2018), 181–213.Google Scholar | DOI
[Dia97] , ‘The Taylor–Wiles construction and multiplicity one’, Invent. Math. 128(2) (1997), 379–391.Google Scholar | DOI
[DL76] and , ‘Representations of reductive groups over finite fields’, Ann. of Math. (2) 103(1) (1976), 103–161.Google Scholar | DOI
[EG14] and , ‘A geometric perspective on the Breuil–Mézard conjecture’, J. Inst. Math. Jussieu 13(1) (2014), 183–223.Google Scholar | DOI
[EGH13] , and , ‘Weight cycling and Serre-type conjectures for unitary groups’, Duke Math. J. 162(9) (2013), 1649–1722.Google Scholar | DOI
[EGS15] , and , ‘Lattices in the cohomology of Shimura curves’, Invent. Math. 200(1) (2015), 1–96.Google Scholar | DOI
[Enn] , ‘On weight elimination for GL()’, Math. Res. Lett. 26(1) (2019), 53–66.Google Scholar | DOI
[Gee11] , ‘Automorphic lifts of prescribed types’, Math. Ann. 350(1) (2011), 107–144.Google Scholar | DOI
[GHS18] , and , ‘General Serre weight conjectures’, J. Eur. Math. Soc. (JEMS) 20(12) (2018), 2859–2949.Google Scholar | DOI
[Gro65] , ‘Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II’, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 231.Google Scholar
[Gue11] , ‘Modularity lifting theorems for Galois representations of unitary type’, Compos. Math. 147(4) (2011), 1022–1058.Google Scholar | DOI
[Her09] , ‘The weight in a Serre-type conjecture for tame n-dimensional Galois representations’, Duke Math. J. 149(1) (2009), 37–116.Google Scholar | DOI
[HK04] and , ‘Reflexive pull-backs and base extension’, J. Algebraic Geom. 13(2) (2004), 233–247.Google Scholar | DOI
[HLM17] , and , ‘On mod p local-global compatibility for GL in the ordinary case’, Compos. Math. 153(11) (2017), 2215–2286.Google Scholar | DOI
[Hum06] , Modular Representations of Finite Groups of Lie Type, London Mathematical Society Lecture Note Series, 326 (Cambridge University Press, Cambridge, 2006).Google Scholar
[Jan03] , Representations of Algebraic Groups, second edn, Mathematical Surveys and Monographs, 107 (American Mathematical Society, Providence, RI, 2003).Google Scholar
[Kis08] , ‘Potentially semi-stable deformation rings’, J. Amer. Math. Soc. 21(2) (2008), 513–546.Google Scholar | DOI
[Le18] , ‘Lattices in the cohomology of U (3) arithmetic manifolds’, Math. Ann. 372(1–2) (2018), 55–89.Google Scholar | DOI
[LLHL19] , and , ‘Weight elimination in Serre-type conjectures’, Duke Math. J. 168(13) (2019), 2433–2506.Google Scholar | DOI
[LLHLM18] , , and , ‘Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212(1) (2018), 1–107.Google Scholar | DOI
[Pil93] , ‘Reduction modulo p of some Deligne–Lusztig characters’, Arch. Math. (Basel) 61(5) (1993), 421–433.Google Scholar | DOI
[Pil97] ‘Loewy series for principal series representations of finite Chevalley groups’, J. Algebra 189(1) (1997), 101–124.Google Scholar | DOI
[Sta19] The Stacks Project Authors, Stacks Project, , 2019.Google Scholar
[Tay08] , ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations. II’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183–239.Google Scholar | DOI
Cité par Sources :
