PRIMES REPRESENTED BY INCOMPLETE NORM FORMS
Forum of Mathematics, Pi, Tome 8 (2020)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $K=\mathbb{Q}(\unicode[STIX]{x1D714})$ with $\unicode[STIX]{x1D714}$ the root of a degree $n$ monic irreducible polynomial $f\in \mathbb{Z}[X]$. We show that the degree $n$ polynomial $N(\sum _{i=1}^{n-k}x_{i}\unicode[STIX]{x1D714}^{i-1})$ in $n-k$ variables takes the expected asymptotic number of prime values if $n\geqslant 4k$. In the special case $K=\mathbb{Q}(\sqrt[n]{\unicode[STIX]{x1D703}})$, we show that $N(\sum _{i=1}^{n-k}x_{i}\sqrt[n]{\unicode[STIX]{x1D703}^{i-1}})$ takes infinitely many prime values, provided $n\geqslant 22k/7$.Our proof relies on using suitable ‘Type I’ and ‘Type II’ estimates in Harman’s sieve, which are established in a similar overall manner to the previous work of Friedlander and Iwaniec on prime values of $X^{2}+Y^{4}$ and of Heath-Brown on $X^{3}+2Y^{3}$. Our proof ultimately relies on employing explicit elementary estimates from the geometry of numbers and algebraic geometry to control the number of highly skewed lattices appearing in our final estimates.
@article{10_1017_fmp_2019_8,
     author = {JAMES MAYNARD},
     title = {PRIMES {REPRESENTED} {BY} {INCOMPLETE} {NORM} {FORMS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {8},
     year = {2020},
     doi = {10.1017/fmp.2019.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.8/}
}
TY  - JOUR
AU  - JAMES MAYNARD
TI  - PRIMES REPRESENTED BY INCOMPLETE NORM FORMS
JO  - Forum of Mathematics, Pi
PY  - 2020
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.8/
DO  - 10.1017/fmp.2019.8
LA  - en
ID  - 10_1017_fmp_2019_8
ER  - 
%0 Journal Article
%A JAMES MAYNARD
%T PRIMES REPRESENTED BY INCOMPLETE NORM FORMS
%J Forum of Mathematics, Pi
%D 2020
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.8/
%R 10.1017/fmp.2019.8
%G en
%F 10_1017_fmp_2019_8
JAMES MAYNARD. PRIMES REPRESENTED BY INCOMPLETE NORM FORMS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2019.8

[1] Bateman, P. T. and Horn, R. A., ‘A heuristic asymptotic formula concerning the distribution of prime numbers’, Math. Comp. 16 (1962), 363–367.Google Scholar | DOI

[2] Birch, B. J., ‘Forms in many variables’, Proc. R. Soc. Ser. A 265 (1961/1962), 245–263.Google Scholar

[3] Cassels, J. W. S., An Introduction to the Geometry of Numbers, Classics in Mathematics (Springer, Berlin, 1997), Corrected reprint of the 1971 edition.Google Scholar

[4] Coleman, M. D., ‘A zero-free region for the Hecke L-functions’, Mathematika 37(2) (1990), 287–304.Google Scholar | DOI

[5] Davenport, H., ‘On a principle of Lipschitz’, J. Lond. Math. Soc. (2) 26 (1951), 179–183.Google Scholar | DOI

[6] Davenport, H., ‘Indefinite quadratic forms in many variables. II’, Proc. Lond. Math. Soc. (3) 8 (1958), 109–126.Google Scholar | DOI

[7] Duke, W., ‘Some problems in multidimensional analytic number theory’, Acta Arith. 52(3) (1989), 203–228.Google Scholar | DOI

[8] Friedlander, J. and Iwaniec, H., ‘The polynomial X 2 + Y 4 captures its primes’, Ann. of Math. (2) 148(3) (1998), 945–1040.Google Scholar | DOI

[9] Halberstam, H. and Richert, H.E., Sieve Methods, L.M.S. monographs (Academic Press, 1974).Google Scholar

[10] Harman, G., ‘On the distribution of 𝛼p modulo one. II’, Proc. Lond. Math. Soc. (3) 72(2) (1996), 241–260.Google Scholar | DOI

[11] Harman, G., Prime-detecting Sieves, London Mathematical Society Monographs Series, 33 (Princeton University Press, Princeton, NJ, 2007).Google Scholar

[12] Heath-Brown, D. R., ‘Diophantine approximation with square-free numbers’, Math. Z. 187(3) (1984), 335–344.Google Scholar | DOI

[13] Heath-Brown, D. R., ‘Primes represented by x 3 + 2y 3’, Acta Math. 186(1) (2001), 1–84.Google Scholar | DOI

[14] Heath-Brown, D. R. and Li, X., ‘Prime values of a 2 + p 4’, Invent. Math. 208(2) (2017), 441–499.Google Scholar | DOI

[15] Heath-Brown, D. R. and Moroz, B. Z., ‘Primes represented by binary cubic forms’, Proc. Lond. Math. Soc. (3) 84(2) (2002), 257–288.Google Scholar | DOI

[16] Heath-Brown, D. R. and Moroz, B. Z., ‘On the representation of primes by cubic polynomials in two variables’, Proc. Lond. Math. Soc. (3) 88(2) (2004), 289–312.Google Scholar | DOI

[17] Iwaniec, H., ‘Primes represented by quadratic polynomials in two variables’, Acta Arith. 24 (1973/74), 435–459. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, V.Google Scholar | DOI

[18] Lang, S., Diophantine Geometry, Interscience Tracts in Pure and Applied Mathematics, 11 (Interscience Publishers (a division of John Wiley & Sons), New York–London, 1962).Google Scholar

[19] Neukirch, J., Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322 (Springer, Berlin, 1999), Translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder.Google Scholar | DOI

[20] Titchmarsh, E. C., The Theory of the Riemann Zeta-function, 2nd edn (The Clarendon Press, Oxford University Press, New York, 1986), edited and with a preface by D. R. Heath-Brown.Google Scholar

[21] Weiss, A., ‘The least prime ideal’, J. Reine Angew. Math. 338 (1983), 56–94.Google Scholar | DOI

Cité par Sources :