Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2019_7,
author = {ADAM J. HARPER},
title = {MOMENTS {OF} {RANDOM} {MULTIPLICATIVE} {FUNCTIONS,} {I:} {LOW} {MOMENTS,} {BETTER} {THAN} {SQUAREROOT} {CANCELLATION,} {AND} {CRITICAL} {MULTIPLICATIVE} {CHAOS}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {8},
year = {2020},
doi = {10.1017/fmp.2019.7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.7/}
}
TY - JOUR AU - ADAM J. HARPER TI - MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS JO - Forum of Mathematics, Pi PY - 2020 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.7/ DO - 10.1017/fmp.2019.7 LA - en ID - 10_1017_fmp_2019_7 ER -
%0 Journal Article %A ADAM J. HARPER %T MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS %J Forum of Mathematics, Pi %D 2020 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.7/ %R 10.1017/fmp.2019.7 %G en %F 10_1017_fmp_2019_7
ADAM J. HARPER. MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS. Forum of Mathematics, Pi, Tome 8 (2020). doi: 10.1017/fmp.2019.7
[1] , and , ‘Maxima of a randomized Riemann zeta function, and branching random walks’, Ann. Appl. Probab. 27(1) (2017), 178–215.Google Scholar | DOI
[2] , , , and , ‘Basic properties of critical lognormal multiplicative chaos’, Ann. Probab. 43(5) (2015), 2205–2249.Google Scholar | DOI
[3] , ‘An elementary approach to Gaussian multiplicative chaos’, Electron. Commun. Probab. 22(Paper No. 27) (2017), 12 pp.Google Scholar | DOI
[4] and , ‘Helson’s problem for sums of a random multiplicative function’, Mathematika 62(1) (2016), 101–110.Google Scholar | DOI
[5] and , ‘Random multiplicative functions in short intervals’, Int. Math. Res. Not. IMRN 2012 (2012), 479–492.Google Scholar | DOI
[6] , , and , ‘Renormalization of critical Gaussian multiplicative chaos and KPZ relation’, Comm. Math. Phys. 330(1) (2014), 283–330.Google Scholar | DOI
[7] and , Probability and Random Processes, 3rd edn, (Oxford University Press, New York, 2001).Google Scholar
[8] , Probability: A Graduate Course, 2nd edn, (Springer Texts in Statistics, New York, 2013).Google Scholar | DOI
[9] , ‘On random multiplicative functions’, inHubert Delange Colloquium, (Orsay, 1982), Publications Mathématiques d’Orsay, 83 (Univ. Paris XI, Orsay, 1983), 74–96.Google Scholar
[10] , ‘Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function’, Ann. Appl. Probab. 23(2) (2013), 584–616.Google Scholar | DOI
[11] , ‘On the limit distributions of some sums of a random multiplicative function’, J. reine angew. Math. 678 (2013), 95–124.Google Scholar
[12] , ‘Moments of random multiplicative functions, II: High moments’, Algebra Number Theory, to appear.Google Scholar
[13] , and , ‘A note on Helson’s conjecture on moments of random multiplicative functions’, inAnalytic Number Theory (Springer, Cham, 2015), 145–169.Google Scholar | DOI
[14] and , ‘Moments of random multiplicative functions and truncated characteristic polynomials’, Q. J. Math. 67(4) (2016), 683–714.Google Scholar
[15] , ‘Hankel forms’, Studia Math. 198(1) (2010), 79–84.Google Scholar | DOI
[16] , ‘Summation of a random multiplicative function on numbers having few prime factors’, Math. Proc. Cambridge Philos. Soc. 150 (2011), 193–214.Google Scholar | DOI
[17] and , ‘Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees’, Ann. Probab. 37(2) (2009), 742–789.Google Scholar | DOI
[18] , and , ‘On mean values of random multiplicative functions’, Proc. Amer. Math. Soc. 141 (2013), 409–420. Also see for some corrections to the published version.Google Scholar | DOI
[19] and , Random Walk: a Modern Introduction, 1st edn, (Cambridge University Press, Cambridge, 2010).Google Scholar | DOI
[20] and , Multiplicative Number Theory I: Classical Theory, 1st edn, (Cambridge University Press, Cambridge, 2007).Google Scholar
[21] , ‘The distribution of the summatory function of the Möbius function’, Proc. Lond. Math. Soc. (3) 89(3) (2004), 361–389.Google Scholar | DOI
[22] and , ‘Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition’, Ann. Probab. 37(6) (2009), 2150–2173.Google Scholar | DOI
[23] and , ‘Gaussian multiplicative chaos and applications: A review’, Probab. Surv. 11 (2014), 315–392.Google Scholar | DOI
[24] , ‘Two-dimensional analogues of an inequality of Esseen with applications to the Central Limit Theorem’, Theory Probab. Appl. 11 (1966), 325–335.Google Scholar | DOI
[25] and , ‘Integral means and boundary limits of Dirichlet series’, Bull. Lond. Math. Soc. 41(3) (2009), 411–422.Google Scholar | DOI
[26] and , ‘Some open questions in analysis for Dirichlet series’, inRecent Progress on Operator Theory and Approximation in Spaces of Analytic Functions, Contemp. Mathematics, 679 (American Mathematical Society, Providence, RI, 2016), 179–191.Google Scholar | DOI
[27] and , ‘Multiplicative chaos measures for a random model of the Riemann zeta function’, Preprint available online at .Google Scholar
[28] and , ‘The Riemann zeta function and Gaussian multiplicative chaos: statistics on the critical line’, Preprint available online at .Google Scholar
[29] , ‘Moments of the Riemann zeta function’, Ann. of Math. 170 (2009), 981–993.Google Scholar | DOI
[30] , ‘L 1 -Norm of Steinhaus chaos on the polydisc’, Monatsh. Math. 181(2) (2016), 473–483.Google Scholar | DOI
[31] , ‘Random factorizations and Riemann’s hypothesis’, Duke Math. J. 11 (1944), 267–275.Google Scholar | DOI
Cité par Sources :