HIGHER GENUS GROMOV–WITTEN THEORY OF $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ AND $\mathsf{CohFTs}$ ASSOCIATED TO LOCAL CURVES
Forum of Mathematics, Pi, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the higher genus equivariant Gromov–Witten theory of the Hilbert scheme of $n$ points of $\mathbb{C}^{2}$. Since the equivariant quantum cohomology, computed by Okounkov and Pandharipande [Invent. Math. 179 (2010), 523–557], is semisimple, the higher genus theory is determined by an $\mathsf{R}$-matrix via the Givental–Teleman classification of Cohomological Field Theories (CohFTs). We uniquely specify the required $\mathsf{R}$-matrix by explicit data in degree $0$. As a consequence, we lift the basic triangle of equivalences relating the equivariant quantum cohomology of the Hilbert scheme $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ and the Gromov–Witten/Donaldson–Thomas correspondence for 3-fold theories of local curves to a triangle of equivalences in all higher genera. The proof uses the analytic continuation of the fundamental solution of the QDE of the Hilbert scheme of points determined by Okounkov and Pandharipande [Transform. Groups 15 (2010), 965–982]. The GW/DT edge of the triangle in higher genus concerns new CohFTs defined by varying the 3-fold local curve in the moduli space of stable curves. The equivariant orbifold Gromov–Witten theory of the symmetric product $\mathsf{Sym}^{n}(\mathbb{C}^{2})$ is also shown to be equivalent to the theories of the triangle in all genera. The result establishes a complete case of the crepant resolution conjecture [Bryan and Graber, Algebraic Geometry–Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 23–42; Coates et al., Geom. Topol. 13 (2009), 2675–2744; Coates Ruan, Ann. Inst. Fourier (Grenoble) 63 (2013), 431–478].
@article{10_1017_fmp_2019_4,
     author = {RAHUL PANDHARIPANDE and HSIAN-HUA TSENG},
     title = {HIGHER {GENUS} {GROMOV{\textendash}WITTEN} {THEORY} {OF} $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ {AND} $\mathsf{CohFTs}$ {ASSOCIATED} {TO} {LOCAL} {CURVES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fmp.2019.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.4/}
}
TY  - JOUR
AU  - RAHUL PANDHARIPANDE
AU  - HSIAN-HUA TSENG
TI  - HIGHER GENUS GROMOV–WITTEN THEORY OF $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ AND $\mathsf{CohFTs}$ ASSOCIATED TO LOCAL CURVES
JO  - Forum of Mathematics, Pi
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.4/
DO  - 10.1017/fmp.2019.4
LA  - en
ID  - 10_1017_fmp_2019_4
ER  - 
%0 Journal Article
%A RAHUL PANDHARIPANDE
%A HSIAN-HUA TSENG
%T HIGHER GENUS GROMOV–WITTEN THEORY OF $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ AND $\mathsf{CohFTs}$ ASSOCIATED TO LOCAL CURVES
%J Forum of Mathematics, Pi
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.4/
%R 10.1017/fmp.2019.4
%G en
%F 10_1017_fmp_2019_4
RAHUL PANDHARIPANDE; HSIAN-HUA TSENG. HIGHER GENUS GROMOV–WITTEN THEORY OF $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ AND $\mathsf{CohFTs}$ ASSOCIATED TO LOCAL CURVES. Forum of Mathematics, Pi, Tome 7 (2019). doi: 10.1017/fmp.2019.4

[1] Bryan, J. and Graber, T., ‘The crepant resolution conjecture’, inAlgebraic Geometry–Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 23–42.Google Scholar

[2] Bryan, J. and Pandharipande, R., ‘The local Gromov–Witten theory of curves’, J. Amer. Math. Soc. 21 (2008), 101–136.Google Scholar

[3] Cavalieri, R., ‘A topological quantum field theory of intersection numbers on moduli spaces of admissible covers’, Algebra Number Theory 1 (2007), 35–66.Google Scholar

[4] Coates, T. and Givental, A., ‘Quantum Riemann–Roch, Lefschetz and Serre’, Ann. of Math. (2) 165 (2007), 15–53.Google Scholar

[5] Coates, T., Iritani, H. and Tseng, H.-H., ‘Wall-crossings in toric Gromov–Witten theory. I. Crepant examples’, Geom. Topol. 13 (2009), 2675–2744.Google Scholar

[6] Coates, T. and Ruan, Y., ‘Quantum cohomology and crepant resolutions: a conjecture’, Ann. Inst. Fourier (Grenoble) 63 (2013), 431–478.Google Scholar

[7] Dubrovin, B., ‘Geometry of 2D topological filed theories’, inIntegrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, 1620 (Springer, Berlin, 1996), 120–348.Google Scholar

[8] Faber, C. and Pagani, N., ‘The class of the bielliptic locus in genus 3’, Int. Math. Res. Not. IMRN 12 (2015), 3943–3961.Google Scholar

[9] Faber, C. and Pandharipande, R., ‘Hodge integrals and Gromov–Witten theory’, Invent. Math. 139 (2000), 173–199.Google Scholar

[10] Fulton, W. and Pandharipande, R., ‘Notes on stable maps and quantum cohomology’, inAlgebraic Geometry–Santa Cruz 1995, Part 2, Proceedings of Symposia in Applied Mathematics, 62 (American Mathematical Society, Providence, RI, 1997), 45–96.Google Scholar

[11] Givental, A., ‘Elliptic Gromov–Witten invariants and the generalized mirror conjecture’, inIntegrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997) (World Scientific Publishing, River Edge, NJ, 1998), 107–155.Google Scholar

[12] Givental, A., ‘Gromov–Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J. 4 (2001), 551–568.Google Scholar

[13] Givental, A., ‘Semisimple Frobenius structures at higher genus’, Int. Math. Res. Not. IMRN 23 (2001), 1265–1286.Google Scholar

[14] Göttsche, L., ‘Hilbert schemes of points on surfaces’, inICM Proceedings, Vol. II (Higher Education Press, Beijing, China, 2002), 483–494.Google Scholar

[15] Graber, T. and Pandharipande, R., ‘Localization of virtual classes’, Invent. Math. 135 (1999), 487–518.Google Scholar

[16] Grojnowski, I., ‘Instantons and affine algebras I: the Hilbert scheme and vertex operators’, Math. Res. Lett. 3 (1996), 275–291.Google Scholar

[17] Haiman, M., ‘Combinatorics, symmetric functions and Hilbert schemes’, inCurrent Developments in Mathematics 2002, Vol. 1 (International Press of Boston, Somerville, MA, USA, 2002), 39–111.Google Scholar

[18] Haiman, M., ‘Notes on Macdonald polynomials and the geometry of Hilbert schemes’, inSymmetric Functions 2001: Surveys of Developments and Perspectives, Proceedings of the NATO Advanced Study Institute held in Cambridge, June 25–July 6, 2001 (ed. Fomin, S.) (Kluwer, Dordrecht, 2002), 1–64.Google Scholar

[19] Ince, E. L., Ordinary Differential Equations (Dover Publications, New York, 1944).Google Scholar

[20] Kontsevich, M. and Manin, Y., ‘Gromov–Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys. 164 (1994), 525–562.Google Scholar

[21] Lee, Y.-P. and Pandharipande, R., ‘Frobenius manifolds, Gromov–Witten theory, and Virasoro constraints’, Preprint available from the authors’ website: https://people.math.ethz.ch/∼rahul/Part1.ps.Google Scholar

[22] Lehn, M., ‘Chern classes of tautological sheaves on Hilbert schemes of points on surfaces’, Invent. Math. 136 (1999), 157–207.Google Scholar

[23] Macdonald, I., Symmetric Functions and Hall Polynomials, 2nd edn, Oxford Mathematical Monographs (Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995), With contributions by A. Zelevinsky.Google Scholar

[24] Manin, Y., Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, 47 (American Mathematical Society, Providence, RI, 1999).Google Scholar

[25] Marian, A., Oprea, D., Pandharipande, R., Pixton, A. and Zvonkine, D., ‘The Chern character of the Verlinde bundle over the moduli space of stable curves’, J. Reine Angew. Math. 732 (2017), 147–163.Google Scholar

[26] Maulik, D., Pandharipande, R. and Thomas, R., ‘Curves on K3 surfaces and modular forms’, J. Topol. 3 (2010), 937–996.Google Scholar

[27] Mumford, D., ‘Towards an enumerative geometry of the moduli space of curves’, inArithmetics and Geometry, Vol. 2 (eds. Artin, M. and Tate, J.) (Birkhäuser, Boston, MA, USA, 1983), 271–328.Google Scholar

[28] Nakajima, H., Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, 18 (American Mathematical Society, Providence, RI, 1999).Google Scholar

[29] Okounkov, A. and Pandharipande, R., ‘Quantum cohomology of the Hilbert scheme of points in the plane’, Invent. Math. 179 (2010), 523–557.Google Scholar

[30] Okounkov, A. and Pandharipande, R., ‘The quantum differential equation of the Hilbert scheme of points in the plane’, Transform. Groups 15 (2010), 965–982.Google Scholar

[31] Okounkov, A. and Pandharipande, R., ‘The local Donaldson–Thomas theory of curves’, Geom. Topol. 14 (2010), 1503–1567.Google Scholar

[32] Pandharipande, R., ‘Descendents for stable pairs on 3-folds’, inModern Geometry: A Celebration of the Work of Simon Donaldson, Proceedings of Symposia in Pure Mathematics, 99 (2018), 251–288.Google Scholar

[33] Pandharipande, R., ‘Cohomological field theory calculations’, inProceedings of the ICM, Vol. 1 (World Scientific, Rio de Janeiro, 2018), 869–898.Google Scholar

[34] Pandharipande, R. and Pixton, A., ‘GW/P descendent correspondence for toric 3-folds’, Geom. Topol. 18 (2014), 2747–2821.Google Scholar

[35] Pandharipande, R., Pixton, A. and Zvonkine, D., ‘Relations on M via 3-spin structures’, J. Amer. Math. Soc. 28 (2015), 279–309.Google Scholar

[36] Pandharipande, R. and Thomas, R., ‘Counting curves via stable pairs in the derived category’, Invent. Math. 178 (2009), 407–447.Google Scholar

[37] Russell, D. L. and Subiya, Y., ‘The problem of singular perturbations of linear ordinary differential equations at regular singular points, I’, Funkcial. Ekvac. 9 (1966), 207–218.Google Scholar

[38] Russell, D. L. and Subiya, Y., ‘The problem of singular perturbations of linear ordinary differential equations at regular singular points, II’, Funkcial. Ekvac. 11 (1968), 175–184.Google Scholar

[39] Schmitt, J. and Van Zelm, J., ‘Intersections of loci of admissible covers with tautological classes’, Preprint, 2018, arXiv:1808.05817.Google Scholar

[40] Teleman, C., ‘The structure of 2D semi-simple field theories’, Invent. Math. 188 (2012), 525–588.Google Scholar

[41] Tseng, H.-H., ‘Orbifold quantum Riemann–Roch, Lefschetz and Serre’, Geom. Topol. 14 (2010), 1–81.Google Scholar

[42] Wasow, W., Asymptotic Expansions for Ordinary Differential Equations, Pure and Applied Mathematics, XIV (Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965).Google Scholar

[43] Whittaker, E. and Watson, G., A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.Google Scholar

Cité par Sources :