THE CONORMAL TORUS IS A COMPLETE KNOT INVARIANT
Forum of Mathematics, Pi, Tome 7 (2019)

Voir la notice de l'article provenant de la source Cambridge University Press

We use microlocal sheaf theory to show that knots can only have Legendrian isotopic conormal tori if they themselves are isotopic or mirror images.
@article{10_1017_fmp_2019_1,
     author = {VIVEK SHENDE},
     title = {THE {CONORMAL} {TORUS} {IS} {A} {COMPLETE} {KNOT} {INVARIANT}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {7},
     year = {2019},
     doi = {10.1017/fmp.2019.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.1/}
}
TY  - JOUR
AU  - VIVEK SHENDE
TI  - THE CONORMAL TORUS IS A COMPLETE KNOT INVARIANT
JO  - Forum of Mathematics, Pi
PY  - 2019
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.1/
DO  - 10.1017/fmp.2019.1
LA  - en
ID  - 10_1017_fmp_2019_1
ER  - 
%0 Journal Article
%A VIVEK SHENDE
%T THE CONORMAL TORUS IS A COMPLETE KNOT INVARIANT
%J Forum of Mathematics, Pi
%D 2019
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2019.1/
%R 10.1017/fmp.2019.1
%G en
%F 10_1017_fmp_2019_1
VIVEK SHENDE. THE CONORMAL TORUS IS A COMPLETE KNOT INVARIANT. Forum of Mathematics, Pi, Tome 7 (2019). doi: 10.1017/fmp.2019.1

[Abo] Abouzaid, M., ‘Nearby Lagrangians with vanishing Maslov class are homotopy equivalent’, Invent. Math. 189(2) (2012), 251–313.Google Scholar

[AK] Abouzaid, M. and Kragh, T., ‘Simple homotopy equivalence of nearby Lagrangians’, Acta Mathematica 220(2) (2018), 207–237.Google Scholar

[BBD] Beilinson, A., Bernstein, J. and Deligne, P., ‘Faisceaux pervers’, Astérisque 100 (1982), 5–171.Google Scholar

[BEY] Berest, Y., Eshmatov, A. and Yeung, W.-K., ‘Perverse sheaves and knot contact homology’, Comptes Rendus Mathematique 355(4) (2017), 378–399.Google Scholar

[BO] Bondal, A. and Orlov, D., ‘Reconstruction of a variety from the derived category and groups of autoequivalences’, Compositio Math. 125(3) (2001), 327–344.Google Scholar

[Bot] Bott, R., ‘On manifolds all of whose geodesics are closed’, Ann. of Math. (2) 60 (1954), 375–382.Google Scholar

[Chi] Chiu, S.-F., ‘Non-squeezing property of contact balls’, Duke Mathematical Journal 166(4) (2017), 605–655.Google Scholar

[CELN] Cieliebak, K., Ekholm, T., Latschev, J. and Ng, L., ‘Knot contact homology, string topology, and the cord algebra’, Journal de l’École polytechnique-Mathématiques 4 (2017), 661–780.Google Scholar

[Cor1] Cornwell, C. R., ‘KCH representations, augmentations, and A-polynomials’, Journal of Symplectic Geometry 15(4) (2017), 983–1017.Google Scholar

[Cor2] Cornwell, C. R., ‘Knot contact homology and representations of knot groups’, J. Topol. 7(4) (2014), 1221–1242.Google Scholar

[ENS] Ekholm, T., Ng, L. and Shende, V., ‘A complete knot invariant from contact homology’, Inventiones mathematicae 211(3) (2018), 1149–1200.Google Scholar

[FSS] Fukaya, K., Seidel, P. and Smith, I., ‘Exact Lagrangian submanifolds in simply-connected cotangent bundles’, Invent. Math. 172(1) (2008), 1–27.Google Scholar

[Gr] Gray, J., ‘Some global properties of Contact structures’, Ann. of Math. (2) 69(2) (1959), 421–450.Google Scholar

[GL] Gordon, C. and Luecke, J., ‘Knots are determined by their complements’, J. Amer. Math. Soc. 2(2) (1989), 371–415.Google Scholar

[GLi] Gordon, C. and Lidman, T., ‘Knot contact homology detects cabled, composite, and torus knots’, Proceedings of the American Mathematical Society 145(12) (2017), 5405–5412.Google Scholar

[Gui] Guillermou, S., ‘Quantization of conic Lagrangian submanifolds of cotangent bundles’. Preprint, 2012, arXiv:1212.5818.Google Scholar

[Gui2] Guillermou, S., ‘The Gromov–Eliashberg theorem by microlocal sheaf theory’. Preprint, 2013, arXiv:1311.0187.Google Scholar

[Gui3] Guillermou, S., ‘The three cusps conjecture’. Preprint, 2016, arXiv:1603.07876.Google Scholar

[GKS] Guillermou, S., Kashiwara, M. and Schapira, P., ‘Sheaf quantization of Hamiltonian isotopies and applications to nondisplaceability problems’, Duke Math. J. 161(2) (2012), 201–245.Google Scholar

[Her] Hertwick, M., ‘A counterexample to the isomorphism problem for integral group rings’, Ann. of Math. (2) 154(1) (2001), 115–138.Google Scholar

[Hig] Higman, G., ‘The units of group-rings’, Proc. Lond. Math. Soc. (2) 46 (1940), 231–248.Google Scholar

[HS] Howie, J. and Short, H., ‘The band-sum problem’, J. Lond. Math. Soc. (2) 31(3) (1985), 571–576.Google Scholar

[KS] Kashiwara, M. and Schapira, P., Sheaves on Manifolds, Grundlehren Math. Wiss., 292 (Springer, 1990).Google Scholar

[N1] Nadler, D., ‘Microlocal branes are constructible sheaves’, Selecta Math. (N.S.) 15(4) (2009), 563–619.Google Scholar

[Ng3] Ng, L., ‘Framed knot contact homology’, Duke Math. J. 141(2) (2008), 365–406.Google Scholar

[Orl] Orlov, D., ‘Derived categories of coherent sheaves and equivalences between them’, Russian Math. Surveys 58(3) (2003), 511–591.Google Scholar

[STZ] Shende, V., Treumann, D. and Zaslow, E., ‘Legendrian knots and constructible sheaves’, Inventiones mathematicae 207(3) (2017), 1031–1133.Google Scholar

[STWZ] Shende, V., Treumann, D., Williams, H. and Zaslow, E., ‘Cluster varieties from Legendrian knots’. Duke Mathematical Journal, Preprint, 2015, arXiv:1512.08942, to appear.Google Scholar

[STW] Shende, V., Treumann, D. and Williams, H., ‘On the combinatorics of exact Lagrangian surfaces’. Preprint, 2016, arXiv:1603.07449.Google Scholar

[Tam] Tamarkin, D., ‘Microlocal condition for non-displaceablility’, inAlgebraic and Analytic Microlocal Analysis (Springer, 2013), 99–223.Google Scholar

[Wal] Waldhausen, F., ‘On irreducible 3-manifolds which are sufficiently large’, Ann. of Math. (2) 87(1) (1968), 56–88.Google Scholar

Cité par Sources :