A CLASS OF GROWTH MODELS RESCALING TO KPZ
Forum of Mathematics, Pi, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider a large class of $1+1$-dimensional continuous interface growth models and we show that, in both the weakly asymmetric and the intermediate disorder regimes, these models converge to Hopf–Cole solutions to the KPZ equation.
@article{10_1017_fmp_2018_2,
     author = {MARTIN HAIRER and JEREMY QUASTEL},
     title = {A {CLASS} {OF} {GROWTH} {MODELS} {RESCALING} {TO} {KPZ}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fmp.2018.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2018.2/}
}
TY  - JOUR
AU  - MARTIN HAIRER
AU  - JEREMY QUASTEL
TI  - A CLASS OF GROWTH MODELS RESCALING TO KPZ
JO  - Forum of Mathematics, Pi
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2018.2/
DO  - 10.1017/fmp.2018.2
LA  - en
ID  - 10_1017_fmp_2018_2
ER  - 
%0 Journal Article
%A MARTIN HAIRER
%A JEREMY QUASTEL
%T A CLASS OF GROWTH MODELS RESCALING TO KPZ
%J Forum of Mathematics, Pi
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2018.2/
%R 10.1017/fmp.2018.2
%G en
%F 10_1017_fmp_2018_2
MARTIN HAIRER; JEREMY QUASTEL. A CLASS OF GROWTH MODELS RESCALING TO KPZ. Forum of Mathematics, Pi, Tome 6 (2018). doi: 10.1017/fmp.2018.2

[ACQ11] Amir, G., Corwin, I. and Quastel, J., ‘Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions’, Comm. Pure Appl. Math. 64(4) (2011), 466–537.Google Scholar

[AKQ10] Alberts, T., Khanin, K. and Quastel, J., ‘Intermediate disorder regime for directed polymers in dimension 1+1’, Phys. Rev. Lett. 105(9) (2010), 090603.Google Scholar

[BA07] Ben-Artzi, M., ‘Lectures on viscous Hamilton-Jacobi equations’, unpublished lecture notes (2007). URL: http://www.ma.huji.ac.il/∼mbartzi/.Google Scholar

[BC14] Borodin, A. and Corwin, I., ‘Macdonald processes’, Probab. Theory Related Fields 158(1–2) (2014), 225–400.Google Scholar

[BG97] Bertini, L. and Giacomin, G., ‘Stochastic Burgers and KPZ equations from particle systems’, Comm. Math. Phys. 183(3) (1997), 571–607.Google Scholar

[BP57] Bogoliubow, N. N. and Parasiuk, O. S., ‘Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder’, Acta Math. 97(1957) 227–266.Google Scholar

[BPRS93] Bertini, L., Presutti, E., Rüdiger, B. and Saada, E., ‘Dynamical fluctuations at the critical point: convergence to a nonlinear stochastic PDE’, Teor. Veroyatnost. i Primenen. 38(4) (1993), 689–741.Google Scholar

[BQS11] Balázs, M., Quastel, J. and Seppäläinen, T., ‘Fluctuation exponent of the KPZ / stochastic Burgers equation’, J. Amer. Math. Soc. 24(3) (2011), 683–708.Google Scholar

[CT15] Corwin, I. and Tsai, L.-C., ‘KPZ equation limit of higher-spin exclusion processes’, Ann. Probab. 45(3) (2017), 1771–1798.Google Scholar

[DT13] Dembo, A. and Tsai, L.-C., ‘Weakly asymmetric non-simple exclusion process and the Kardar-Parisi-Zhang equation’, Comm. Math. Phys. 341(1) (2016), 219–261.Google Scholar

[FG17] Furlan, M. and Gubinelli, M., ‘Weak universality for a class of 3d stochastic reaction-diffusion models’, Preprint, 2017, arXiv:1708.03118.Google Scholar

[FH14] Friz, P. and Hairer, M., A Course on Rough Paths, Universitext (Springer, New York, 2014), xiv+251. With an introduction to Regularity Structures. doi:.Google Scholar | DOI

[FQ14] Funaki, T. and Quastel, J., ‘KPZ equation, its renormalization and invariant measures’, Stoch. Partial Differ. Equ. Anal. Comput. 3(2) (2015), 159–220.Google Scholar

[GJ14] Gonçalves, P. and Jara, M., ‘Nonlinear fluctuations of weakly asymmetric interacting particle systems’, Arch. Ration. Mech. Anal. 212(2) (2014), 597–644.Google Scholar

[GP15] Gubinelli, M. and Perkowski, N., ‘KPZ reloaded’, Comm. Math. Phys. 349(1) (2017), 165–269.Google Scholar

[GRZ17] Gu, Y., Ryzhik, L. and Zeitouni, O., ‘The Edwards-Wilkinson limit of the random heat equation in dimensions three and higher’, Preprint, 2017, arXiv:1710.00344.Google Scholar

[Hai13] Hairer, M., ‘Solving the KPZ equation’, Ann. of Math. (2) 178(2) (2013), 559–664.Google Scholar

[Hai14] Hairer, M., ‘A theory of regularity structures’, Invent. Math. 198(2) (2014), 269–504.Google Scholar

[Hai15a] Hairer, M., ‘Introduction to regularity structures’, Braz. J. Probab. Stat. 29(2) (2015), 175–210.Google Scholar

[Hai15b] Hairer, M., ‘Regularity structures and the dynamical 𝛷 4 model’, inCurrent Developments in Mathematics 2014 (Int. Press, Somerville, MA, 2016), 1–49.Google Scholar

[Hep69] Hepp, K., ‘On the equivalence of additive and analytic renormalization’, Comm. Math. Phys. 14(1969) 67–69.Google Scholar

[HHZ95] Halpin-Healy, T. and Zhang, Y.-C., ‘Kinetic roughening phenomena, stochastic growth, directed polymers and all that’, Phys. Rep. 254(4–6) (1995), 215–414.Google Scholar

[HL15] Hairer, M. and Labbé, C., ‘Multiplicative stochastic heat equations on the whole space’, J. Eur. Math. Soc. (JEMS) 20(4) (2018), 1005–1054.Google Scholar

[HP15] Hairer, M. and Pardoux, É., ‘A Wong-Zakai theorem for stochastic PDEs’, J. Math. Soc. Japan 67(4) (2015), 1551–1604.Google Scholar

[HPP13] Hairer, M., Pardoux, É. and Piatnitski, A., ‘Random homogenization of a highly oscillatory singular potential’, SPDEs: Anal. Comput. 1(4) (2013), 571–605.Google Scholar

[HS15] Hairer, M. and Shen, H., ‘A central limit theorem for the KPZ equation’, Ann. Probab. 45(6B) (2017), 4167–4221.Google Scholar

[HX18] Hairer, M. and Xu, W., ‘Large-scale limit of interface fluctuation models’, Preprint, 2018, arXiv:1802.08192.Google Scholar

[KPZ86] Kardar, M., Parisi, G. and Zhang, Y.-C., ‘Dynamic scaling of growing interfaces’, Phys. Rev. Lett. 56(9) (1986), 889–892.Google Scholar

[Kru56] Kruskal, J. B. Jr., ‘On the shortest spanning subtree of a graph and the traveling salesman problem’, Proc. Amer. Math. Soc. 7(1956) 48–50.Google Scholar

[KS91] Krug, J. and Spohn, H., ‘Kinetic roughening of growing surfaces’, inSolids Far from Equilibrium (Cambridge University Press, Cambridge, 1991), 479–583.Google Scholar

[Mey92] Meyer, Y., ‘Wavelets and operators’, inCambridge Studies in Advanced Mathematics vol. 37 (Cambridge University Press, Cambridge, 1992), xvi+224. Translated from the 1990 French original by D. H. Salinger. doi:.Google Scholar | DOI

[MFQR] Moreno-Flores, G., Quastel, J. and Remenik, D., In preparation.Google Scholar

[MU17] Magnen, J. and Unterberger, J., ‘Diffusive limit for 3-dimensional KPZ equation: the Cole-Hopf case’, Preprint, 2017, arXiv:1702.03122.Google Scholar

[Mue91] Mueller, C., ‘On the support of solutions to the heat equation with noise’, Stochastics and Stochastic Reports 37(4) (1991), 225–245.Google Scholar

[Nua06] Nualart, D., ‘The Malliavin calculus and related topics’, inProbability and its Applications (New York), second edn, (Springer, Berlin, 2006), xiv+382.Google Scholar

[PP12] Pardoux, É. and Piatnitski, A., ‘Homogenization of a singular random one-dimensional PDE with time-varying coefficients’, Ann. Probab. 40(3) (2012), 1316–1356.Google Scholar

[QV13] Quastel, J. and Valkó, B., ‘Diffusivity of lattice gases’, Arch. Ration. Mech. Anal. 210(1) (2013), 269–320.Google Scholar

[Spo91] Spohn, H., Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics (Springer, Berlin, 1991).Google Scholar

[Swe69] Sweedler, M. E., ‘Hopf algebras’, inMathematics Lecture Note Series (W. A. Benjamin, Inc., New York, 1969), vii+336.Google Scholar

[Wal86] Walsh, J. B., ‘An introduction to stochastic partial differential equations’, inÉcole d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Mathematics, 1180 (Springer, Berlin, 1986), 265–439.Google Scholar

[Zim69] Zimmermann, W., ‘Convergence of Bogoliubov’s method of renormalization in momentum space’, Comm. Math. Phys. 15(1969) 208–234.Google Scholar

Cité par Sources :