Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2018_1,
author = {XUHUA HE},
title = {COCENTERS {OF} $p$ {-ADIC} {GROUPS,} {I:} {NEWTON} {DECOMPOSITION}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {6},
year = {2018},
doi = {10.1017/fmp.2018.1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2018.1/}
}
XUHUA HE. COCENTERS OF $p$ -ADIC GROUPS, I: NEWTON DECOMPOSITION. Forum of Mathematics, Pi, Tome 6 (2018). doi: 10.1017/fmp.2018.1
[1] and , ‘A new proof of the Howe conjecture’, J. Amer. Math. Soc. 13(3) (2000), 639–650.Google Scholar
[2] , and , ‘Trace Paley-Wiener theorem for reductive p-adic groups’, J. Anal. Math. 47 (1986), 180–192.Google Scholar
[3] and , ‘Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d’une donnée radicielle valuée’, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197–376.Google Scholar | DOI
[4] and , ‘Cocenters and representations of affine Hecke algebra’, J. Eur. Math. Soc. 19 (2017), 3143–3177.Google Scholar
[5] and , ‘Cocenters of -adic groups, III: elliptic cocenter and rigid cocenter’, Preprint, 2017, arXiv:1703.00378.Google Scholar
[6] , ‘Orbital integrals on p-adic groups: a proof of the Howe conjecture’, Ann. of Math. (2) 129(2) (1989), 237–251.Google Scholar
[7] , ‘On the K of a p-adic group’, Invent. Math. 140(1) (2000), 171–226.Google Scholar
[8] , ‘Lectures on harmonic analysis for reductive p-adic groups’, inRepresentations of Real and p-Adic Groups, Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 2 (Singapore University Press, Singapore, 2004), 47–94.Google Scholar
[9] , ‘The local Langlands correspondence for GSp over local function fields’, Amer. J. Math. 137 (2015), 1441–1534.Google Scholar
[10] and , ‘On parahoric subgroups’, Adv. Math. 219(1) (2008), 188–198; appendix to: G. Pappas and M. Rapoport, ‘Twisted loop groups and their affine flag varieties’, Adv. Math. (1) (2008), 118–198.Google Scholar
[11] , ‘Admissible invariant distributions on reductive p-adic groups’, inPreface and Notes by S. DeBacker and P. Sally, University Lecture Series, 16(American Mathematical Society, Providence, RI, 1999).Google Scholar
[12] and , ‘Représentations des espaces tordus sur un groupe réductif connexe p-adique’, Astérisque 386 (2017), ix+366 pp.Google Scholar
[13] , ‘Geometric and homological properties of affine Deligne–Lusztig varieties’, Ann. of Math. (2) 179 (2014), 367–404.Google Scholar
[14] , ‘Kottwitz–Rapoport conjecture on unions of affine Deligne–Lusztig varieties’, Ann. Sci. Èc. Norm. Supér. 49 (2016), 1125–1141.Google Scholar
[15] , ‘Cocenters of -adic groups, II: inclusion map’, Preprint, 2016, arXiv:1611.06825.Google Scholar
[16] and , ‘Minimal length elements of extended affine Weyl group’, Compos. Math. 150 (2014), 1903–1927.Google Scholar
[17] , ‘Two conjectures about reductive p-adic groups’, Proc. AMS Symp. Pure Math. XXVI (1973), 377–380.Google Scholar
[18] , ‘Harish-Chandra homomorphisms for p-adic groups’, inCBMS Regional Conference Series in Mathematics, 59 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1985).Google Scholar
[19] , ‘Cuspidal geometry of p-adic groups’, J. Anal. Math. 47 (1986), 1–36.Google Scholar
[20] , ‘Representations groups over close local fields’, J. Anal. Math. 47 (1986), 175–179.Google Scholar
[21] , ‘Isocrystals with additional structure’, Compos. Math. 56 (1985), 201–220.Google Scholar
[22] , ‘Isocrystals with additional structure. II’, Compos. Math. 109 (1997), 255–339.Google Scholar
[23] , Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, 204 (Birkhä user Boston, Inc., Boston, MA, 2002).Google Scholar
[24] , ‘On the Iwahori–Weyl group’, Bull. Soc. Math. France 144 (2016), 117–124.Google Scholar
[25] , ‘Reductive groups over local fields’, inAutomorphic Forms, Representations and L-Functions (Oregon State University, Corvallis, OR., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII (American Mathematical Society, Providence, RI, 1979), 29–69.Google Scholar
[26] , Représentations l-modulaires d’un groupe réductif p-adique avec l≠p , Progr. Math., 137 (Birkhäuser, Boston, 1996).Google Scholar
Cité par Sources :