COCENTERS OF $p$ -ADIC GROUPS, I: NEWTON DECOMPOSITION
Forum of Mathematics, Pi, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we introduce the Newton decomposition on a connected reductive $p$ -adic group $G$ . Based on it we give a nice decomposition of the cocenter of its Hecke algebra. Here we consider both the ordinary cocenter associated to the usual conjugation action on $G$ and the twisted cocenter arising from the theory of twisted endoscopy. We give Iwahori–Matsumoto type generators on the Newton components of the cocenter. Based on it, we prove a generalization of Howe’s conjecture on the restriction of (both ordinary and twisted) invariant distributions. Finally we give an explicit description of the structure of the rigid cocenter.
@article{10_1017_fmp_2018_1,
     author = {XUHUA HE},
     title = {COCENTERS {OF} $p$ {-ADIC} {GROUPS,} {I:} {NEWTON} {DECOMPOSITION}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fmp.2018.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2018.1/}
}
TY  - JOUR
AU  - XUHUA HE
TI  - COCENTERS OF $p$ -ADIC GROUPS, I: NEWTON DECOMPOSITION
JO  - Forum of Mathematics, Pi
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2018.1/
DO  - 10.1017/fmp.2018.1
LA  - en
ID  - 10_1017_fmp_2018_1
ER  - 
%0 Journal Article
%A XUHUA HE
%T COCENTERS OF $p$ -ADIC GROUPS, I: NEWTON DECOMPOSITION
%J Forum of Mathematics, Pi
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2018.1/
%R 10.1017/fmp.2018.1
%G en
%F 10_1017_fmp_2018_1
XUHUA HE. COCENTERS OF $p$ -ADIC GROUPS, I: NEWTON DECOMPOSITION. Forum of Mathematics, Pi, Tome 6 (2018). doi: 10.1017/fmp.2018.1

[1] Barbasch, D. and Moy, A., ‘A new proof of the Howe conjecture’, J. Amer. Math. Soc. 13(3) (2000), 639–650.Google Scholar

[2] Bernstein, J., Deligne, P. and Kazhdan, D., ‘Trace Paley-Wiener theorem for reductive p-adic groups’, J. Anal. Math. 47 (1986), 180–192.Google Scholar

[3] Bruhat, F. and Tits, J., ‘Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d’une donnée radicielle valuée’, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197–376.Google Scholar | DOI

[4] Ciubotaru, D. and He, X., ‘Cocenters and representations of affine Hecke algebra’, J. Eur. Math. Soc. 19 (2017), 3143–3177.Google Scholar

[5] Ciubotaru, D. and He, X., ‘Cocenters of -adic groups, III: elliptic cocenter and rigid cocenter’, Preprint, 2017, arXiv:1703.00378.Google Scholar

[6] Clozel, L., ‘Orbital integrals on p-adic groups: a proof of the Howe conjecture’, Ann. of Math. (2) 129(2) (1989), 237–251.Google Scholar

[7] Dat, J.-F., ‘On the K of a p-adic group’, Invent. Math. 140(1) (2000), 171–226.Google Scholar

[8] Debacker, S., ‘Lectures on harmonic analysis for reductive p-adic groups’, inRepresentations of Real and p-Adic Groups, Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 2 (Singapore University Press, Singapore, 2004), 47–94.Google Scholar

[9] Ganapathy, R., ‘The local Langlands correspondence for GSp over local function fields’, Amer. J. Math. 137 (2015), 1441–1534.Google Scholar

[10] Haines, T. and Rapoport, M., ‘On parahoric subgroups’, Adv. Math. 219(1) (2008), 188–198; appendix to: G. Pappas and M. Rapoport, ‘Twisted loop groups and their affine flag varieties’, Adv. Math. (1) (2008), 118–198.Google Scholar

[11] Harish-Chandra, ‘Admissible invariant distributions on reductive p-adic groups’, inPreface and Notes by S. DeBacker and P. Sally, University Lecture Series, 16(American Mathematical Society, Providence, RI, 1999).Google Scholar

[12] Henniart, G. and Lemaire, B., ‘Représentations des espaces tordus sur un groupe réductif connexe p-adique’, Astérisque 386 (2017), ix+366 pp.Google Scholar

[13] He, X., ‘Geometric and homological properties of affine Deligne–Lusztig varieties’, Ann. of Math. (2) 179 (2014), 367–404.Google Scholar

[14] He, X., ‘Kottwitz–Rapoport conjecture on unions of affine Deligne–Lusztig varieties’, Ann. Sci. Èc. Norm. Supér. 49 (2016), 1125–1141.Google Scholar

[15] He, X., ‘Cocenters of -adic groups, II: inclusion map’, Preprint, 2016, arXiv:1611.06825.Google Scholar

[16] He, X. and Nie, S., ‘Minimal length elements of extended affine Weyl group’, Compos. Math. 150 (2014), 1903–1927.Google Scholar

[17] Howe, R., ‘Two conjectures about reductive p-adic groups’, Proc. AMS Symp. Pure Math. XXVI (1973), 377–380.Google Scholar

[18] Howe, R., ‘Harish-Chandra homomorphisms for p-adic groups’, inCBMS Regional Conference Series in Mathematics, 59 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1985).Google Scholar

[19] Kazhdan, D., ‘Cuspidal geometry of p-adic groups’, J. Anal. Math. 47 (1986), 1–36.Google Scholar

[20] Kazhdan, D., ‘Representations groups over close local fields’, J. Anal. Math. 47 (1986), 175–179.Google Scholar

[21] Kottwitz, R., ‘Isocrystals with additional structure’, Compos. Math. 56 (1985), 201–220.Google Scholar

[22] Kottwitz, R., ‘Isocrystals with additional structure. II’, Compos. Math. 109 (1997), 255–339.Google Scholar

[23] Kumar, S., Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, 204 (Birkhä user Boston, Inc., Boston, MA, 2002).Google Scholar

[24] Richarz, T., ‘On the Iwahori–Weyl group’, Bull. Soc. Math. France 144 (2016), 117–124.Google Scholar

[25] Tits, J., ‘Reductive groups over local fields’, inAutomorphic Forms, Representations and L-Functions (Oregon State University, Corvallis, OR., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII (American Mathematical Society, Providence, RI, 1979), 29–69.Google Scholar

[26] Vignéras, M.-F., Représentations l-modulaires d’un groupe réductif p-adique avec lp , Progr. Math., 137 (Birkhäuser, Boston, 1996).Google Scholar

Cité par Sources :