CLE PERCOLATIONS
Forum of Mathematics, Pi, Tome 5 (2017)

Voir la notice de l'article provenant de la source Cambridge University Press

Conformal loop ensembles (CLEs) are random collections of loops in a simply connected domain, whose laws are characterized by a natural conformal invariance property. The set of points not surrounded by any loop is a canonical random connected fractal set — a random and conformally invariant analog of the Sierpinski carpet or gasket.In the present paper, we derive a direct relationship between the CLEs with simple loops ( $\text{CLE}_{\unicode[STIX]{x1D705}}$ for $\unicode[STIX]{x1D705}\in (8/3,4)$ , whose loops are Schramm’s $\text{SLE}_{\unicode[STIX]{x1D705}}$ -type curves) and the corresponding CLEs with nonsimple loops ( $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ with $\unicode[STIX]{x1D705}^{\prime }:=16/\unicode[STIX]{x1D705}\in (4,6)$ , whose loops are $\text{SLE}_{\unicode[STIX]{x1D705}^{\prime }}$ -type curves). This correspondence is the continuum analog of the Edwards–Sokal coupling between the $q$ -state Potts model and the associated FK random cluster model, and its generalization to noninteger $q$ .Like its discrete analog, our continuum correspondence has two directions. First, we show that for each $\unicode[STIX]{x1D705}\in (8/3,4)$ , one can construct a variant of $\text{CLE}_{\unicode[STIX]{x1D705}}$ as follows: start with an instance of $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ , then use a biased coin to independently color each $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ loop in one of two colors, and then consider the outer boundaries of the clusters of loops of a given color. Second, we show how to interpret $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ loops as interfaces of a continuum analog of critical Bernoulli percolation within $\text{CLE}_{\unicode[STIX]{x1D705}}$ carpets — this is the first construction of continuum percolation on a fractal planar domain. It extends and generalizes the continuum percolation on open domains defined by $\text{SLE}_{6}$ and $\text{CLE}_{6}$ .These constructions allow us to prove several conjectures made by the second author and provide new and perhaps surprising interpretations of the relationship between CLEs and the Gaussian free field. Along the way, we obtain new results about generalized $\text{SLE}_{\unicode[STIX]{x1D705}}(\unicode[STIX]{x1D70C})$ curves for $\unicode[STIX]{x1D70C}-2$ , such as their decomposition into collections of $\text{SLE}_{\unicode[STIX]{x1D705}}$ -type ‘loops’ hanging off of $\text{SLE}_{\unicode[STIX]{x1D705}^{\prime }}$ -type ‘trunks’, and vice versa (exchanging $\unicode[STIX]{x1D705}$ and $\unicode[STIX]{x1D705}^{\prime }$ ). We also define a continuous family of natural $\text{CLE}$ variants called boundary conformal loop ensembles (BCLEs) that share some (but not all) of the conformal symmetries that characterize $\text{CLE}$ s, and that should be scaling limits of critical models with special boundary conditions. We extend the $\text{CLE}_{\unicode[STIX]{x1D705}}$ / $\text{CLE}_{\unicode[STIX]{x1D705}^{\prime }}$ correspondence to a $\text{BCLE}_{\unicode[STIX]{x1D705}}$ / $\text{BCLE}_{\unicode[STIX]{x1D705}^{\prime }}$ correspondence that makes sense for the wider range $\unicode[STIX]{x1D705}\in (2,4]$ and $\unicode[STIX]{x1D705}^{\prime }\in [4,8)$ .
@article{10_1017_fmp_2017_5,
     author = {JASON MILLER and SCOTT SHEFFIELD and WENDELIN WERNER},
     title = {CLE {PERCOLATIONS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fmp.2017.5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.5/}
}
TY  - JOUR
AU  - JASON MILLER
AU  - SCOTT SHEFFIELD
AU  - WENDELIN WERNER
TI  - CLE PERCOLATIONS
JO  - Forum of Mathematics, Pi
PY  - 2017
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.5/
DO  - 10.1017/fmp.2017.5
LA  - en
ID  - 10_1017_fmp_2017_5
ER  - 
%0 Journal Article
%A JASON MILLER
%A SCOTT SHEFFIELD
%A WENDELIN WERNER
%T CLE PERCOLATIONS
%J Forum of Mathematics, Pi
%D 2017
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.5/
%R 10.1017/fmp.2017.5
%G en
%F 10_1017_fmp_2017_5
JASON MILLER; SCOTT SHEFFIELD; WENDELIN WERNER. CLE PERCOLATIONS. Forum of Mathematics, Pi, Tome 5 (2017). doi: 10.1017/fmp.2017.5

[1] Aru, J., Sepúlveda, A. and Werner, W., ‘On bounded-type thin local sets of the two-dimensional Gaussian free field’, J. Inst. Math. Jussieu (2017), 1–28. doi:.Google Scholar | DOI

[2] Beffara, V., ‘The dimension of the SLE curves’, Ann. Probab. 36(4) (2008), 1421–1452.Google Scholar | DOI

[3] Camia, F., Garban, C. and Newman, C. M., ‘Planar Ising magnetization field I. Uniqueness of the critical scaling limit’, Ann. Probab. 43(2) (2015), 528–571.Google Scholar | DOI

[4] Camia, F. and Newman, C. M., ‘Two-dimensional critical percolation: the full scaling limit’, Comm. Math. Phys. 268(1) (2006), 1–38.Google Scholar | DOI

[5] Cardy, J., ‘Conformal field theory and statistical mechanics’, inExact Methods in Low-dimensional Statistical Physics and Quantum Computing (Oxford University Press, Oxford, 2010), 65–98.Google Scholar

[6] Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A. and Smirnov, S., ‘Convergence of Ising interfaces to Schramm’s SLE curves’, C. R. Math. Acad. Sci. Paris 352(2) (2014), 157–161.Google Scholar | DOI

[7] Chelkak, D., Hongler, C. and Izyurov, K., ‘Conformal invariance of spin correlations in the planar Ising model’, Ann. of Math. (2) 181(3) (2015), 1087–1138.Google Scholar | DOI

[8] Chelkak, D. and Smirnov, S., ‘Universality in the 2D Ising model and conformal invariance of fermionic observables’, Invent. Math. 189(3) (2012), 515–580.Google Scholar | DOI

[9] Dubédat, J., ‘Commutation relations for Schramm–Loewner evolutions’, Comm. Pure Appl. Math. 60(12) (2007), 1792–1847.Google Scholar | DOI

[10] Dubédat, J., ‘Duality of Schramm-Loewner evolutions’, Ann. Sci. Éc. Norm. Supér. (4) 42(5) (2009), 697–724.Google Scholar | DOI

[11] Dubédat, J., ‘SLE and the free field: partition functions and couplings’, J. Amer. Math. Soc. 22(4) (2009), 995–1054.Google Scholar | DOI

[12] Duminil-Copin, H., Tassion, V. and Wu, H., 2017, in preparation.Google Scholar

[13] Duplantier, B., Miller, J. and Sheffield, S., ‘Liouville quantum gravity as a mating of trees’. ArXiv e-prints, 2014.Google Scholar

[14] Edwards, R. G. and Sokal, A. D., ‘Generalization of the Fortuin–Kasteleyn–Swendsen–Wang representation and Monte Carlo algorithm’, Phys. Rev. D (3) 38(6) (1988), 2009–2012.Google ScholarPubMed | DOI

[15] Fortuin, C. M. and Kasteleyn, P. W., ‘On the random-cluster model. I. Introduction and relation to other models’, Physica 57 (1972), 536–564.Google Scholar | DOI

[16] Grimmett, G., The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften, 333 [Fundamental Principles of Mathematical Sciences] (Springer, Berlin, 2006).Google Scholar | DOI

[17] Gwynne, E., Mao, C. and Sun, X., ‘Scaling limits for the critical Fortuin–Kasteleyn model on a random planar map I: cone times’. ArXiv e-print, 2015.Google Scholar

[18] Gwynne, E. and Miller, J., ‘Convergence of the topology of critical Fortuin–Kasteleyn planar maps to that of CLE on a Liouville quantum surface’, 2017, in preparation.Google Scholar

[19] Gwynne, E. and Sun, X., ‘Scaling limits for the critical Fortuin–Kastelyn model on a random planar map II: local estimates and empty reduced word exponent’. ArXiv e-print, 2015.Google Scholar

[20] Gwynne, E. and Sun, X., ‘Scaling limits for the critical Fortuin–Kastelyn model on a random planar map III: finite volume case’. ArXiv e-prints, 2015.Google Scholar

[21] Häggström, O., ‘Positive correlations in the fuzzy Potts model’, Ann. Appl. Probab. 9(4) (1999), 1149–1159.Google Scholar | DOI

[22] Higuchi, Y. and Wu, X.-Y., ‘Uniqueness of the critical probability for percolation in the two-dimensional Sierpiński carpet lattice’, Kobe J. Math. 25(1–2) (2008), 1–24.Google Scholar

[23] Hongler, C. and Kytölä, K., ‘Ising interfaces and free boundary conditions’, J. Amer. Math. Soc. 26(4) (2013), 1107–1189.Google Scholar | DOI

[24] Hongler, C. and Smirnov, S., ‘The energy density in the planar Ising model’, Acta Math. 211(2) (2013), 191–225.Google Scholar | DOI

[25] Izyurov, K., ‘Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities’, Comm. Math. Phys. 337(1) (2015), 225–252.Google Scholar | DOI

[26] Kemppainen, A. and Smirnov, S., ‘Conformal invariance of boundary touching loops of FK Ising model’. ArXiv e-prints, 2015.Google Scholar

[27] Kemppainen, A. and S., Smirnov, ‘Random curves, scaling limits and Loewner evolutions’, Ann. Probab. 45(2) (2017), 698–779.Google Scholar | DOI

[28] Kumagai, T., ‘Percolation on pre-Sierpinski carpets’, inNew Trends in Stochastic Analysis (Charingworth, 1994) (World Sci. Publ., River Edge, NJ, 1997), 288–304.Google Scholar

[29] Lawler, G., Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, 114 (American Mathematical Society, Providence, RI, 2005).Google Scholar

[30] Lawler, G., Schramm, O. and Werner, W., ‘Conformal restriction: the chordal case’, J. Amer. Math. Soc. 16(4) (2003), 917–955. (electronic).Google Scholar | DOI

[31] Lawler, G., Schramm, O. and Werner, W., ‘Conformal invariance of planar loop-erased random walks and uniform spanning trees’, Ann. Probab. 32(1B) (2004), 939–995.Google Scholar | DOI

[32] Maes, C. and Vande Velde, K., ‘The fuzzy Potts model’, J. Phys. A 28(15) (1995), 4261–4270.Google Scholar | DOI

[33] Miller, J. and Sheffield, S., ‘CLE(4) and the Gaussian free field’, 2017, in preparation.Google Scholar

[34] Miller, J. and Sheffield, S., ‘Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees’, Probab. Theory Related Fields (2017), doi:.Google Scholar | DOI

[35] Miller, J. and Sheffield, S., ‘Liouville quantum gravity spheres as matings of finite-diameter trees’. ArXiv e-prints, 2015.Google Scholar

[36] Miller, J. and Sheffield, S., ‘Gaussian free field light cones and SLE’. ArXiv e-prints, 2016.Google Scholar

[37] Miller, J. and Sheffield, S., ‘Imaginary geometry I: interacting SLEs’, Probab. Theory Related Fields 164(3–4) (2016), 553–705.Google Scholar | DOI

[38] Miller, J. and Sheffield, S., ‘Imaginary geometry II: reversibility of SLE(𝜌; 𝜌) for 𝜅 ∈ (0, 4)’, Ann. Probab. 44(3) (2016), 1647–1722.Google Scholar

[39] Miller, J. and Sheffield, S., ‘Imaginary geometry III: reversibility of SLE for 𝜅 ∈ (4, 8)’, Ann. of Math. (2) 184(2) (2016), 455–486.Google Scholar | DOI

[40] Miller, J., Sheffield, S. and Werner, W., ‘Non-simple SLE curves are not determined by their range’. ArXiv e-prints, 2016.Google Scholar

[41] Miller, J., Sheffield, S. and Werner, W., ‘Conformal loop ensembles on Liouville quantum gravity’, 2017, in preparation.Google Scholar

[42] Miller, J., Sheffield, S. and Werner, W., ‘Labeled CLE interfaces and the Gaussian free field fan’, 2017, in preparation.Google Scholar

[43] Miller, J., Sun, N. and Wilson, D. B., ‘The Hausdorff dimension of the CLE gasket’, Ann. Probab. 42(4) (2014), 1644–1665.Google Scholar | DOI

[44] Miller, J. and Werner, W., ‘Connection probabilities for conformal loop ensembles’. ArXiv e-prints, 2017.Google Scholar

[45] Nacu, Ş. and Werner, W., ‘Random soups, carpets and fractal dimensions’, J. Lond. Math. Soc. (2) 83(3) (2011), 789–809.Google Scholar | DOI

[46] Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, third edition, Grundlehren der Mathematischen Wissenschaften, 293 [Fundamental Principles of Mathematical Sciences] (Springer, Berlin, 1999).Google Scholar | DOI

[47] Rohde, S. and Schramm, O., ‘Basic properties of SLE’, Ann. of Math. (2) 161(2) (2005), 883–924.Google Scholar | DOI

[48] Rozanov, Y. A., Markov Random Fields, Applications of Mathematics (Springer, New York–Berlin, 1982), Translated from the Russian by Constance M. Elson.Google Scholar | DOI

[49] Schramm, O., ‘Scaling limits of loop-erased random walks and uniform spanning trees’, Israel J. Math. 118 (2000), 221–288.Google Scholar | DOI

[50] Schramm, O. and Sheffield, S., ‘Contour lines of the two-dimensional discrete Gaussian free field’, Acta Math. 202(1) (2009), 21–137.Google Scholar | DOI

[51] Schramm, O. and Sheffield, S., ‘A contour line of the continuum Gaussian free field’, Probab. Theory Related Fields 157(1–2) (2013), 47–80.Google Scholar | DOI

[52] Schramm, O., Sheffield, S. and Wilson, D. B., ‘Conformal radii for conformal loop ensembles’, Comm. Math. Phys. 288(1) (2009), 43–53.Google Scholar | DOI

[53] Schramm, O. and Wilson, D. B., ‘SLE coordinate changes’, New York J. Math. 11 (2005), 659–669. (electronic).Google Scholar

[54] Sepúlveda, A., ‘On thin local sets of the Gaussian free field’. ArXiv e-prints, 2017.Google Scholar

[55] Sheffield, S., ‘Exploration trees and conformal loop ensembles’, Duke Math. J. 147(1) (2009), 79–129.Google Scholar | DOI

[56] Sheffield, S., ‘Conformal weldings of random surfaces: SLE and the quantum gravity zipper’, Ann. Probab. 44(5) (2016), 3474–3545.Google Scholar | DOI

[57] Sheffield, S., ‘Quantum gravity and inventory accumulation’, Ann. Probab. 44(6) (2016), 3804–3848.Google Scholar | DOI

[58] Sheffield, S. and Werner, W., ‘Conformal loop ensembles: the Markovian characterization and the loop-soup construction’, Ann. of Math. (2) 176(3) (2012), 1827–1917.Google Scholar | DOI

[59] Smirnov, S., ‘Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits’, C. R. Acad. Sci. Paris Sér. I Math. 333(3) (2001), 239–244.Google Scholar | DOI

[60] Smirnov, S., ‘Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model’, Ann. of Math. (2) 172(2) (2010), 1435–1467.Google Scholar | DOI

[61] Smirnov, S., ‘Discrete complex analysis and probability’, inProceedings of the International Congress of Mathematicians, Vol. I (Hindustan Book Agency, New Delhi, 2010), 595–621.Google Scholar

[62] Werner, W., Topics on the Two-dimensional Gaussian Free Field, Lecture Notes of ETH Graduate Course (2015).Google Scholar

[63] Werner, W. and Wu, H., ‘On conformally invariant CLE explorations’, Comm. Math. Phys. 320(3) (2013), 637–661.Google Scholar | DOI

[64] Zhan, D., ‘Duality of chordal SLE’, Invent. Math. 174(2) (2008), 309–353.Google Scholar | DOI

[65] Zhan, D., ‘Duality of chordal SLE, II’, Ann. Inst. Henri Poincaré Probab. Stat. 46(3) (2010), 740–759.Google Scholar | DOI

Cité par Sources :