Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2017_4,
     author = {OLIVER PECHENIK and ALEXANDER YONG},
     title = {EQUIVARIANT $K$ {-THEORY} {OF} {GRASSMANNIANS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fmp.2017.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.4/}
}
                      
                      
                    OLIVER PECHENIK; ALEXANDER YONG. EQUIVARIANT $K$ -THEORY OF GRASSMANNIANS. Forum of Mathematics, Pi, Tome 5 (2017). doi: 10.1017/fmp.2017.4
[AnGrMi11] , and , ‘Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces’, J. Eur. Math. Soc. (JEMS) 13 (2011), 57–84.Google Scholar
[Br05] , ‘Lectures on the geometry of flag varieties’, inTopics in Cohomological Studies of Algebraic Varieties, Trends in Mathematics (Birkhäuser, Basel, 2005), 33–85.Google Scholar
[Bu02] , ‘A Littlewood–Richardson rule for the K-theory of Grassmannians’, Acta Math. 189 (2002), 37–78.Google Scholar
[Bu15] , ‘Mutations of puzzles and equivariant cohomology of two-step flag varieties’, Ann. of Math. (2) 182 (2015), 173–220.Google Scholar
[BKPT16] , , and , ‘The puzzle conjecture for the cohomology of two-step flag manifolds’, J. Algebraic Combin. 44 (2016), 973–1007.Google Scholar
[BuKrTa03] , and , ‘Gromov–Witten invariants on Grassmannians’, J. Amer. Math. Soc. 16 (2003), 901–915.Google Scholar
[BuMi11] and , ‘Quantum K-theory of Grassmannians’, Duke Math. J. 156(3) (2011), 501–538.Google Scholar
[Co09] , ‘A Littlewood–Richardson rule for two-step flag varieties’, Invent. Math. 176 (2009), 325–395.Google Scholar
[CoVa09] and , ‘Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus’, inAlgebraic Geometry—Seattle 2005, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 77–124, Part 1.Google Scholar
[FuLa94] and , ‘A Pieri formula in the Grothendieck ring of a flag bundle’, Duke Math. J. 76(3) (1994), 711–729.Google Scholar
[GiLe17] and , ‘Monodromy and K-theory of Schubert curves via generalized jeu de taquin’, J. Algebraic Combin. 45 (2017), 191–243.Google Scholar
[Gr01] , ‘Positivity in equivariant Schubert calculus’, Duke Math. J. 109(3) (2001), 599–614.Google Scholar
[GrKu08] and , ‘On positivity in T-equivariant K-theory of flag varieties’, Int. Math. Res. Not. (2008), Art. ID rnn093, 43 pages.Google Scholar
[HLMvW11] , , and , ‘Refinements of the Littlewood–Richardson rule’, Trans. Amer. Math. Soc. 363 (2011), 1665–1686.Google Scholar
[Kn10] , ‘Puzzles, positroid varieties, and equivariant -theory of Grassmannians’, Preprint, 2010, arXiv:1008.4302.Google Scholar
[KnMiYo09] , and , ‘Gröbner geometry of vertex decompositions and of flagged tableaux’, J. Reine Angew. Math. 630 (2009), 1–31.Google Scholar
[KnTa03] and , ‘Puzzles and (equivariant) cohomology of Grassmannians’, Duke Math. J. 119(2) (2003), 221–260.Google Scholar
[KoKu90] and , ‘ T-equivariant K-theory of generalized flag varieties’, J. Differential Geom. 32 (1990), 549–603.Google Scholar
[Kr05] , ‘Schubert classes in the equivariant -theory and equivariant cohomology of the Grassmannian’, Preprint, 2005, arXiv:math/0512204.Google Scholar
[LaSc82] and , ‘Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux’, C. R. Acad. Sci. Paris 295 (1982), 629–633.Google Scholar
[LePo07] and , ‘Affine Weyl groups in K-theory and representation theory’, Int. Math. Res. Not. IMRN (12) (2007), Art. ID rnm038, 65 pp.Google Scholar
[LiRi34] and , ‘Group characters and algebra’, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 233(721–730) (1934), 99–141.Google Scholar
[MoSa99] and , ‘A Littlewood–Richardson rule for factorial Schur functions’, Trans. Amer. Math. Soc. 351(11) (1999), 4429–4443.Google Scholar
[PeYo15] and , ‘Genomic tableaux and combinatorial K-theory’, Discrete Math. Theor. Comput. Sci. Proc. FPSAC‘15 (2015), 37–48. FPSAC 2015, Daejeon, Korea.Google Scholar
[PeYo17a] and , ‘Equivariant K-theory of Grassmannians II: The Knutson–Vakil conjecture’, Compos. Math. 153 (2017), 667–677.Google Scholar
[PeYo17b] and , ‘Genomic tableaux’, J. Algebraic Combin. 45 (2017), 649–685.Google Scholar
[RoYo15] and , ‘Combinatorial rules for three bases of polynomials’, Sém. Lothar. Combin. 74 (2015), Art. B74a.Google Scholar
[Sc77] , ‘Combinatoire et représentation du groupe symétrique’, inActes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976, Lecture Notes in Mathematics, 579 (Springer, Berlin, 1977), 59–113.Google Scholar
[ThYo09b] and , ‘A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus’, Algebra Number Theory 3(2) (2009), 121–148.Google Scholar
[ThYo13] and , ‘Equivariant Schubert calculus and jeu de taquin’, Ann. Inst. Fourier (Grenoble) (2013), to appear.Google Scholar
[WhZi16] and , ‘Littlewood–Richardson coefficients for Grothendieck polynomials from integrability’, Preprint, 2016, arXiv:1607.02396.Google Scholar
[Wi06] , ‘ K-théorie équivariante des tours de Bott. Application à la structure multiplicative de la K-théorie équivariante des variétés de drapeaux’, Duke Math. J. 132(2) (2006), 271–309.Google Scholar
[WoYo12] and , ‘A Gröbner basis for Kazhdan–Lusztig ideals’, Amer. J. Math. 134 (2012), 1089–1137.Google Scholar
Cité par Sources :
