POLYNOMIAL PATTERNS IN THE PRIMES
Forum of Mathematics, Pi, Tome 6 (2018)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $P_{1},\ldots ,P_{k}:\mathbb{Z}\rightarrow \mathbb{Z}$ be polynomials of degree at most $d$ for some $d\geqslant 1$ , with the degree $d$ coefficients all distinct, and admissible in the sense that for every prime $p$ , there exists integers $n,m$ such that $n+P_{1}(m),\ldots ,n+P_{k}(m)$ are all not divisible by $p$ . We show that there exist infinitely many natural numbers $n,m$ such that $n+P_{1}(m),\ldots ,n+P_{k}(m)$ are simultaneously prime, generalizing a previous result of the authors, which was restricted to the special case $P_{1}(0)=\cdots =P_{k}(0)=0$ (though it allowed for the top degree coefficients to coincide). Furthermore, we obtain an asymptotic for the number of such prime pairs $n,m$ with $n\leqslant N$ and $m\leqslant M$ with $M$ slightly less than $N^{1/d}$ . This asymptotic is already new in general in the homogeneous case $P_{1}(0)=\cdots =P_{k}(0)=0$ . Our arguments rely on four ingredients. The first is a (slightly modified) generalized von Neumann theorem of the authors, reducing matters to controlling certain averaged local Gowers norms of (suitable normalizations of) the von Mangoldt function. The second is a more recent concatenation theorem of the authors, controlling these averaged local Gowers norms by global Gowers norms. The third ingredient is the work of Green and the authors on linear equations in primes, allowing one to compute these global Gowers norms for the normalized von Mangoldt functions. Finally, we use the Conlon–Fox–Zhao densification approach to the transference principle to combine the preceding three ingredients together. In the special case $P_{1}(0)=\cdots =P_{k}(0)=0$ , our methods also give infinitely many $n,m$ with $n+P_{1}(m),\ldots ,n+P_{k}(m)$ in a specified set primes of positive relative density $\unicode[STIX]{x1D6FF}$ , with $m$ bounded by $\log ^{L}n$ for some $L$ independent of the density $\unicode[STIX]{x1D6FF}$ . This improves slightly on a result from our previous paper, in which $L$ was allowed to depend on $\unicode[STIX]{x1D6FF}$ .
@article{10_1017_fmp_2017_3,
     author = {TERENCE TAO and TAMAR ZIEGLER},
     title = {POLYNOMIAL {PATTERNS} {IN} {THE} {PRIMES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {6},
     year = {2018},
     doi = {10.1017/fmp.2017.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.3/}
}
TY  - JOUR
AU  - TERENCE TAO
AU  - TAMAR ZIEGLER
TI  - POLYNOMIAL PATTERNS IN THE PRIMES
JO  - Forum of Mathematics, Pi
PY  - 2018
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.3/
DO  - 10.1017/fmp.2017.3
LA  - en
ID  - 10_1017_fmp_2017_3
ER  - 
%0 Journal Article
%A TERENCE TAO
%A TAMAR ZIEGLER
%T POLYNOMIAL PATTERNS IN THE PRIMES
%J Forum of Mathematics, Pi
%D 2018
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.3/
%R 10.1017/fmp.2017.3
%G en
%F 10_1017_fmp_2017_3
TERENCE TAO; TAMAR ZIEGLER. POLYNOMIAL PATTERNS IN THE PRIMES. Forum of Mathematics, Pi, Tome 6 (2018). doi: 10.1017/fmp.2017.3

[1] Bateman, P. and Horn, R., ‘A heuristic asymptotic formula concerning the distribution of prime numbers’, Math. Comput. 16 (1962), 363–367.Google Scholar

[2] Bergelson, V. and Leibman, A., ‘Polynomial extensions of van der Waerden’s and Szemerédi’s theorems’, J. Amer. Math. Soc. 9(3) (1996), 725–753.Google Scholar

[3] Bienvenu, P.-Y., ‘Asymptotics for some polynomial patterns in the primes’, Preprint, 2015, arXiv:1511.07317.Google Scholar

[4] Conlon, D., Fox, B. and Zhao, Y., ‘A relative Szemerédi theorem’, Geom. Funct. Anal. 25(3) (2015), 733–762.Google Scholar

[5] Cook, B. and Magyar, A., ‘Diophantine equations in the primes’, Invent. Math. 198(3) (2014), 701–737.Google Scholar

[6] Ford, K., Green, B., Konyagin, S. and Tao, T., ‘Large gaps between consecutive prime numbers’, Ann. of Math. (2) 183(3) (2016), 935–974.Google Scholar

[7] Friedlander, J. and Iwaniec, H., Opera de Cribro, American Mathematical Society Colloquium Publications, 57 (American Mathematical Society, Providence, 2010).Google Scholar | DOI

[8] Gowers, W. T., ‘A new proof of Szemerédi’s theorem for arithmetic progressions of length four’, Geom. Funct. Anal. 8(3) (1998), 529–551.Google Scholar | DOI

[9] Gowers, W. T., ‘A new proof of Szemerédi’s theorem’, Geom. Funct. Anal. 11(3) (2001), 465–588.Google Scholar

[10] Gowers, W. T., ‘Decompositions, approximate structure, transference, and the Hahn–Banach theorem’, Bull. Lond. Math. Soc. 42(4) (2010), 573–606.Google Scholar

[11] Gowers, W. T. and Wolf, J., ‘The true complexity of a system of linear equations’, Proc. Lond. Math. Soc. (3) 100(1) (2010), 155–176.Google Scholar

[12] Green, B. and Tao, T., ‘The primes contain arbitrarily long arithmetic progressions’, Ann. of Math. (2) 167(2) (2008), 481–547.Google Scholar | DOI

[13] Green, B. and Tao, T., ‘Linear equations in primes’, Ann. of Math. (2) 171(3) (2010), 1753–1850.Google Scholar

[14] Green, B. and Tao, T., ‘The Möbius function is strongly orthogonal to nilsequences’, Ann. of Math. (2) 175(2) (2012), 541–566.Google Scholar

[15] Green, B. and Tao, T., ‘The quantitative behaviour of polynomial orbits on nilmanifolds’, Ann. of Math. (2) 175(2) (2012), 465–540.Google Scholar

[16] Green, B., Tao, T. and Ziegler, T., ‘An inverse theorem for the Gowers U s+1[N]-norm’, Ann. of Math. (2) 176(2) (2012), 1231–1372.Google Scholar | DOI

[17] Hardy, G. H. and Littlewood, J. E., ‘Some problems of ‘partitio numerorum’; III: On the expression of a number as a sum of primes’, Acta Math. 44 (1923), 1–70.Google Scholar

[18] Huxley, M. N., ‘On the difference between consecutive primes’, Invent. Math. 15 (1972), 164–170.Google Scholar

[19] Koukoulopoulos, D., ‘Primes in short arithmetic progressions’, Int. J. Number Theory 11(5) (2015), 1499–1521.Google Scholar

[20] Le, T. H., ‘Intersective polynomials and the primes’, J. Number Theory 130(8) (2010), 1705–1717.Google Scholar

[21] Le, T. H. and Wolf, J., ‘Polynomial configurations in the primes’, Int. Math. Res. Not. IMRN (23) (2014), 6448–6473.Google Scholar

[22] Matomäki, K. and Radziwiłł, M., ‘Multiplicative functions in short intervals’, Ann. of Math. (2) 183(3) (2016), 1015–1056.Google Scholar | DOI

[23] Matomäki, K., Radziwiłł, M. and Tao, T., ‘An averaged form of Chowla’s conjecture’, Algebra Number Theory 9(9) (2015), 2167–2196.Google Scholar

[24] Reingold, O., Trevisan, L., Tulsiani, M. and Vadhan, S., ‘New proofs of the Green–Tao–Ziegler dense model theorem: an exposition’, Preprint, 2008, arXiv:0806.0381.Google Scholar

[25] Schinzel, A. and Sierpiński, W., ‘Sur certaines hypothèses concernant les nombres premiers’, Acta Arith. 4 (1958), 185–208. Erratum (1959), 259.Google Scholar

[26] Szemerédi, E., ‘On sets of integers containing no k elements in arithmetic progression’, Acta Arith. 27 (1975), 199–245. Collection of articles in memory of Juriǐ Vladimirovič Linnik.Google Scholar

[27] Tao, T. and Ziegler, T., ‘The primes contain arbitrarily long polynomial progressions’, Acta Math. 201 (2008), 213–305. Erratum, Acta Math. (2) (2013), 403–404.Google Scholar

[28] Tao, T. and Ziegler, T., ‘Narrow progressions in the primes’, inAnalytic Number Theory (Springer, Cham, 2015), 357–379.Google Scholar

[29] Tao, T. and Ziegler, T., ‘Concatenation theorems for anti-Gowers-uniform functions and Host–Kra characteristic factors’, Discrete Anal. (2016), Paper No. 13, 60 pp.Google Scholar

[30] Zhan, T., ‘On the representation of large odd integer as a sum of three almost equal primes’, Acta Math. Sinica (N.S.) 7(3) (1991), 259–272.Google Scholar

Cité par Sources :