CANNON–THURSTON MAPS FOR KLEINIAN GROUPS
Forum of Mathematics, Pi, Tome 5 (2017)

Voir la notice de l'article provenant de la source Cambridge University Press

We show that Cannon–Thurston maps exist for degenerate free groups without parabolics, that is, for handlebody groups. Combining these techniques with earlier work proving the existence of Cannon–Thurston maps for surface groups, we show that Cannon–Thurston maps exist for arbitrary finitely generated Kleinian groups without parabolics, proving conjectures of Thurston and McMullen. We also show that point pre-images under Cannon–Thurston maps for degenerate free groups without parabolics correspond to endpoints of leaves of an ending lamination in the Masur domain, whenever a point has more than one pre-image. This proves a conjecture of Otal. We also prove a similar result for point pre-images under Cannon–Thurston maps for arbitrary finitely generated Kleinian groups without parabolics.
@article{10_1017_fmp_2017_2,
     author = {MAHAN MJ},
     title = {CANNON{\textendash}THURSTON {MAPS} {FOR} {KLEINIAN} {GROUPS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fmp.2017.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.2/}
}
TY  - JOUR
AU  - MAHAN MJ
TI  - CANNON–THURSTON MAPS FOR KLEINIAN GROUPS
JO  - Forum of Mathematics, Pi
PY  - 2017
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.2/
DO  - 10.1017/fmp.2017.2
LA  - en
ID  - 10_1017_fmp_2017_2
ER  - 
%0 Journal Article
%A MAHAN MJ
%T CANNON–THURSTON MAPS FOR KLEINIAN GROUPS
%J Forum of Mathematics, Pi
%D 2017
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.2/
%R 10.1017/fmp.2017.2
%G en
%F 10_1017_fmp_2017_2
MAHAN MJ. CANNON–THURSTON MAPS FOR KLEINIAN GROUPS. Forum of Mathematics, Pi, Tome 5 (2017). doi: 10.1017/fmp.2017.2

[Ago04] Agol, I., ‘Tameness of hyperbolic 3-manifolds’. Preprint, 2004, arXiv:math.GT/0405568.Google Scholar

[BB04] Brock, J. and Bromberg, K., ‘Density of geometrically finite Kleinian groups’, Acta Math. 192 (2004), 33–93.Google Scholar

[BB11] Brock, J. and Bromberg, K., ‘Geometric inflexibility and 3-manifolds that fiber over the circle’, J. Topol. 4(1) (2011), 1–38.Google Scholar

[BB14] Brock, J. and Bromberg, K., ‘Geometric inflexibility of hyperbolic cone-manifolds’. Preprint, 2014, Proceedings of the 2014 MSJ-SI, arXiv:1412.4635, to appear.Google Scholar

[BBES03] Brock, J., Bromberg, K., Evans, R. and Souto, J., ‘Tameness on the boundary and Ahlfors’ measure conjecture’, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 145–166.Google Scholar

[BCM12] Brock, J. F., Canary, R. D. and Minsky, Y. N., ‘The classification of Kleinian surface groups II: the ending lamination conjecture’, Ann. of Math. (2) 176(1) (2012), 1–149.Google Scholar

[BCM14] Brock, J. F., Canary, R. D. and Minsky, Y. N., ‘The classification of finitely generated Kleinian groups’, in preparation, 2014.Google Scholar

[Bon86] Bonahon, F., ‘Bouts de varietes hyperboliques de dimension 3’, Ann. of Math. (2) 124 (1986), 71–158.Google Scholar

[Bow05] Bowditch, B. H., ‘Model geometries for hyperbolic manifolds’. Preprint, Southampton, 2005.Google Scholar

[Bow11] Bowditch, B. H., ‘The ending lamination theorem’. Preprint, Warwick, 2011.Google Scholar

[Bow12] Bowditch, B. H., ‘Relatively hyperbolic groups’, Internat. J. Algebra Comput. 22(3) (2012), 1250016, 66 pp.Google Scholar

[Bow13] Bowditch, B. H., Geometry and Topology Down Under, Contemp. Math., 597 (American Mathematical Society, Providence, RI, 2013), 65–138.Google Scholar

[Bro07] Bromberg, K., ‘Projective structures with degenerate holonomy and the Bers density conjecture’, Ann. of Math. (2) 166(1) (2007), 77–93.Google Scholar

[Can93] Canary, R. D., ‘Ends of hyperbolic 3 manifolds’, J. Amer. Math. Soc. 6 (1993), 1–35.Google Scholar

[CT85] Cannon, J. and Thurston, W. P., Group invariant Peano Curves. Preprint, Princeton, 1985.Google Scholar

[CT07] Cannon, J. and Thurston, W. P., ‘Group invariant Peano curves’, Geom. Topol. 11 (2007), 1315–1356.Google Scholar

[DM16] Das, S. and Mj, M., ‘Semiconjugacies between relatively hyperbolic boundaries’, Groups Geom. Dyn. 10(2) (2016), 733–752.Google Scholar

[Far98] Farb, B., ‘Relatively hyperbolic groups’, Geom. Funct. Anal. 8 (1998), 810–840.Google Scholar

[Flo80] Floyd, W. J., ‘Group completions and limit sets of Kleinian groups’, Invent. Math. 57 (1980), 205–218.Google Scholar

[CG06] Calegari, D. and Gabai, D., ‘Shrink-wrapping and the taming of hyperbolic 3-manifolds’, J. Amer. Math. Soc. 19(2) (2006), 385–446.Google Scholar

[Hem76] Hempel, J., 3 Manifolds, (Princeton University Press, 1976).Google Scholar

[Hub93] Hubbard, J. H., ‘Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz’, inTopological Methods in Modern Mathematics (eds. Goldberg, L. R. and Philips, A. G.) (Publish or Perish Inc., Houston, TX, 1993), 467–511.Google Scholar

[JKLO14] Jeon, W., Kim, I., Lecuire, C. and Ohshika, K., ‘Primitive stable representations of free Kleinian groups’, Israel J. Math. 199(2) (2014), 841–866.Google Scholar

[Kla99] Klarreich, E., ‘Semiconjugacies between Kleinian group actions on the Riemann sphere’, Amer. J. Math 121 (1999), 1031–1078.Google Scholar

[KS03] Kleineidam, G. and Souto, J., ‘Ending laminations in the masur domain’, inKleinian Groups and Hyperbolic 3-Manifolds (Warwick, 2001), (eds. Komori, Y., Markovic, V. and Series, C.) London Math. Soc. Lecture Notes, 299 (Cambridge University Press, Cambridge, 2003), 105–129.Google Scholar

[LLR11] Leininger, C. J., Long, D. D. and Reid, A. W., ‘Commensurators of non-free finitely generated Kleinian groups’, Algebr. Geom. Topol. 11 (2011), 605–624.Google Scholar

[Luf78] Luft, E., ‘Actions of the homeotopy group of an orientable 3-dimensional handlebody’, Math. Ann. 234(3) (1978), 279–292.Google Scholar

[McM98] Mcmullen, C. T., Renormalization and 3-manifolds which Fiber over the Circle, (Princeton University Press, Princeton, NJ, 1998).Google Scholar

[McM01] Mcmullen, C. T., ‘Local connectivity, Kleinian groups and geodesics on the blow-up of the torus’, Invent. Math. 97 (2001), 95–127.Google Scholar

[Mil00] Milnor, J., ‘Local connectivity of Julia sets: expository lectures’, inThe Mandelbrot Set, Theme and Variations (ed. Lei, T.) (Cambridge University Press, Cambridge, 2000), 67–116.Google Scholar

[Min10] Minsky, Y. N., ‘The classification of Kleinian surface groups I: models and bounds’, Ann. of Math. (2) 171 (2010), 1–107.Google Scholar

[Min13] Minsky, Y. N., ‘On dynamics of Out(F ) on PSL (C) characters’, Israel J. Math. 193(1) (2013), 47–70.Google Scholar

[Mit98] Mitra, M., ‘Cannon–Thurston maps for trees of hyperbolic metric spaces’, J. Differential Geom. 48 (1998), 135–164.Google Scholar

[Miy02] Miyachi, H., ‘Semiconjugacies between actions of topologically tame Kleinian groups’. Preprint, 2002.Google Scholar

[Mj11] Mj, M., ‘On discreteness of commensurators’, Geom. and Topol. 15 (2011), 331–350.Google Scholar

[Mj14a] Mj, M., ‘Cannon–Thurston maps for surface groups’, Ann. of Math. (2) 179(1) (2014), 1–80.Google Scholar

[Mj14b] Mj, M., ‘Ending laminations and Cannon–Thurston Maps, with an appendix by S. Das and M. Mj’, Geom. Funct. Anal. 24 (2014), 297–321.Google Scholar

[MM86] Mccullough, D. and Miller, A., ‘Homeomorphisms of 3-manifolds with compressible boundary’, Mem. Amer. Math. Soc. 61(344) (1986), xii+100 pp.Google Scholar

[Mos03] Mosher, L., ‘Stable Teichmuller quasigeodesics and ending laminations’, Geom. Topol. 7 (2003), 33–90.Google Scholar

[MP89] Mccarthy, J. D. and Papadopoulos, A., ‘Dynamics on Thurston’s sphere of projective measured foliations’, Comment. Math. Helv. 64 (1989), 133–166.Google Scholar

[MP11] Mj, M. and Pal, A., ‘Relative hyperbolicity, trees of spaces and Cannon–Thurston maps’, Geom. Dedicata 151 (2011), 59–78.Google Scholar

[Ohs98] Ohshika, K., ‘Rigidity and topological conjugates of topologically tame Kleinian groups’, Trans. Amer. Math. Soc. 350(10) (1998), 3989–4022.Google Scholar

[Ota88] Otal, J. P., ‘Courants geodesiques et produit libres’, These d’Etat, Universit Paris-Sud, Orsay, 1988.Google Scholar

[Ota95] Otal, J. P., ‘Sur le nouage des geodesiques dans les varietes hyperboliques’, C. R. Acad. Sci. Paris Ser. I Math. 320(7) (1995), 847–852.Google Scholar

[Ota03] Otal, J. P., ‘Les geodesiques fermees d’une variete hyperbolique en tant que noeuds’, inKleinian Groups and Hyperbolic 3-Manifolds (London Math. Soc., Orsay, 2003).Google Scholar

[Sou06] Souto, J., ‘Cannon–Thurston maps for thick free groups’. Preprint, 2006.Google Scholar

[Sou08] Souto, J., ‘Short geodesics in hyperbolic compression bodies are not knotted’. Preprint, 2008.Google Scholar

[Sul83] Sullivan, D., ‘Conformal dynamical systems’, inGeometric Dynamics, Lecture Notes in Mathematics, 1007 (Springer, Berlin, 1983), 725–752.Google Scholar

[Sul85] Sullivan, D., ‘Quasiconformal homeomorphisms and dynamics I: solution of the Fatou–Julia problem on wandering domains’, Ann. of Math. (2) 122 (1985), 401–418.Google Scholar

[Suz77] Suzuki, S., ‘On homeomorphisms of a 3-dimensional handlebody’, Canad. J. Math. 29(1) (1977), 111–124.Google Scholar

[Thu80] Thurston, W. P., The Geometry and Topology of 3-Manifolds (Princeton University Notes, Princeton, NJ, 1980).Google Scholar

[Thu82] Thurston, W. P., ‘Three dimensional manifolds, Kleinian groups and hyperbolic geometry’, Bull. Amer. Math. Soc. 6 (1982), 357–382.Google Scholar

Cité par Sources :