Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2017_1,
     author = {THOMAS HALES and MARK ADAMS and GERTRUD BAUER and TAT DAT DANG and JOHN HARRISON and LE TRUONG HOANG and CEZARY KALISZYK and VICTOR MAGRON and SEAN MCLAUGHLIN and TAT~THANG NGUYEN and QUANG TRUONG NGUYEN and TOBIAS NIPKOW and STEVEN OBUA and JOSEPH PLESO and JASON RUTE and ALEXEY SOLOVYEV and THI HOAI AN TA and NAM TRUNG TRAN and THI DIEP TRIEU and JOSEF URBAN and KY VU and ROLAND ZUMKELLER},
     title = {A {FORMAL} {PROOF} {OF} {THE} {KEPLER} {CONJECTURE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {5},
     year = {2017},
     doi = {10.1017/fmp.2017.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.1/}
}
                      
                      
                    TY - JOUR AU - THOMAS HALES AU - MARK ADAMS AU - GERTRUD BAUER AU - TAT DAT DANG AU - JOHN HARRISON AU - LE TRUONG HOANG AU - CEZARY KALISZYK AU - VICTOR MAGRON AU - SEAN MCLAUGHLIN AU - TAT THANG NGUYEN AU - QUANG TRUONG NGUYEN AU - TOBIAS NIPKOW AU - STEVEN OBUA AU - JOSEPH PLESO AU - JASON RUTE AU - ALEXEY SOLOVYEV AU - THI HOAI AN TA AU - NAM TRUNG TRAN AU - THI DIEP TRIEU AU - JOSEF URBAN AU - KY VU AU - ROLAND ZUMKELLER TI - A FORMAL PROOF OF THE KEPLER CONJECTURE JO - Forum of Mathematics, Pi PY - 2017 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.1/ DO - 10.1017/fmp.2017.1 LA - en ID - 10_1017_fmp_2017_1 ER -
%0 Journal Article %A THOMAS HALES %A MARK ADAMS %A GERTRUD BAUER %A TAT DAT DANG %A JOHN HARRISON %A LE TRUONG HOANG %A CEZARY KALISZYK %A VICTOR MAGRON %A SEAN MCLAUGHLIN %A TAT THANG NGUYEN %A QUANG TRUONG NGUYEN %A TOBIAS NIPKOW %A STEVEN OBUA %A JOSEPH PLESO %A JASON RUTE %A ALEXEY SOLOVYEV %A THI HOAI AN TA %A NAM TRUNG TRAN %A THI DIEP TRIEU %A JOSEF URBAN %A KY VU %A ROLAND ZUMKELLER %T A FORMAL PROOF OF THE KEPLER CONJECTURE %J Forum of Mathematics, Pi %D 2017 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2017.1/ %R 10.1017/fmp.2017.1 %G en %F 10_1017_fmp_2017_1
THOMAS HALES; MARK ADAMS; GERTRUD BAUER; TAT DAT DANG; JOHN HARRISON; LE TRUONG HOANG; CEZARY KALISZYK; VICTOR MAGRON; SEAN MCLAUGHLIN; TAT THANG NGUYEN; QUANG TRUONG NGUYEN; TOBIAS NIPKOW; STEVEN OBUA; JOSEPH PLESO; JASON RUTE; ALEXEY SOLOVYEV; THI HOAI AN TA; NAM TRUNG TRAN; THI DIEP TRIEU; JOSEF URBAN; KY VU; ROLAND ZUMKELLER. A FORMAL PROOF OF THE KEPLER CONJECTURE. Forum of Mathematics, Pi, Tome 5 (2017). doi: 10.1017/fmp.2017.1
[1] , ‘Introducing HOL Zero’, inMathematical Software–ICMS 2010 (Springer, 2010), 142–143.Google Scholar
[2] , ‘Flyspecking Flyspeck’, inMathematical Software–ICMS 2014 (Springer, 2014), 16–20.Google Scholar | DOI
[3] and , ‘Recording and refactoring HOL Light tactic proofs’, inProceedings of the IJCAR Workshop on Automated Theory Exploration (2012).Google Scholar
[4] , ‘Formalizing plane graph theory – towards a formalized proof of the Kepler conjecture’. PhD Thesis, Technische Universität München, 2006. http://mediatum.ub.tum.de/doc/601794/document.pdf.Google Scholar
[5] and , ‘Flyspeck I: Tame graphs’, inThe Archive of Formal Proofs (eds. , and ) http://afp.sf.net/entries/Flyspeck-Tame.shtml, May 2006. Formal proof development.Google Scholar
[6] , Lagerungen in der Ebene auf der Kugel und im Raum, 1st edn, (Springer, Berlin–New York, 1953).Google Scholar | DOI
[7] , The Flyspeck Project, 2014. https://github.com/flyspeck/flyspeck.Google Scholar
[8] , GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk/.Google Scholar
[9] , , , , , , , , and et al. , ‘A machine-checked proof of the odd order theorem’, inInteractive Theorem Proving (Springer, 2013), 163–179.Google Scholar
[10] , and , Edinburgh LCF: A Mechanized Logic of Computation, Lecture Notes in Computer Science, 78 (1979).Google Scholar | DOI
[11] and , Introduction to HOL: a Theorem Proving Environment for Higher Order Logic (Cambridge University Press, 1993).Google Scholar
[12] and , ‘Code generation via higher-order rewrite systems’, inFunctional and Logic Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19–21, 2010. Proceedings (Springer, 2010), 103–117.Google Scholar | DOI
[13] , Developments in formal proofs. Bourbaki Seminar, 2013/2014 (1086):1086-1-23, 2014.Google Scholar
[14] , ‘A proof of the Kepler conjecture’, Ann. of Math. (2) 162 (2005), 1063–1183.Google Scholar
[15] , ‘Introduction to the Flyspeck Project’, inMathematics, Algorithms, Proofs (eds. , and ) Dagstuhl Seminar Proceedings, Dagstuhl, Germany, number 05021 (Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2006), http://drops.dagstuhl.de/opus/volltexte/2006/432.Google Scholar
[16] , ‘The strong dodecahedral conjecture and Fejes Tóth’s contact conjecture’, Technical Report, 2011.Google Scholar
[17] , Dense Sphere Packings: a Blueprint for Formal Proofs, London Mathematical Society Lecture Note Series, 400 (Cambridge University Press, 2012).Google Scholar
[18] and , ‘The Kepler conjecture’, Discrete Comput. Geom. 36(1) (2006), 1–269.Google Scholar
[19] , , , , and , ‘A revision of the proof of the Kepler Conjecture’, Discrete Comput. Geom. 44(1) (2010), 1–34.Google Scholar
[20] , ‘Towards self-verification of HOL Light’, inAutomated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17–20, 2006, Proceedings (eds. and ) Lecture Notes in Computer Science, 4130 (Springer, 2006), 177–191. ISBN 3-540-37187-7.Google Scholar | DOI
[21] , ‘Without loss of generality’, inProceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009 (eds. , , and ) Lecture Notes in Computer Science, 5674 (Springer, Munich, Germany, 2009), 43–59.Google Scholar
[22] , ‘HOL Light: An overview’, inTheorem Proving in Higher Order Logics (Springer, 2009), 60–66.Google Scholar | DOI
[23] , The HOL Light theorem prover, 2014. http://www.cl.cam.ac.uk/∼jrh13/hol-light/index.html.Google Scholar
[24] and , ‘Scalable LCF-style proof translation’, inProc. of the 4th International Conference on Interactive Theorem Proving (ITP’13) (eds. , and ) Lecture Notes in Computer Science, 7998 (Springer, 2013), 51–66.Google Scholar | DOI
[25] and , ‘Learning-assisted automated reasoning with Flyspeck’, J. Automat. Reason. 53(2) (2014), 173–213. .Google Scholar | DOI
[26] and , ‘Learning-assisted theorem proving with millions of lemmas’, J. Symbolic Comput. 69(0) (2014), 109–128. ISSN 0747-7171. doi:. URL http://www.sciencedirect.com/science/article/pii/S074771711400100X.Google Scholar | DOI
[27] , Strena seu de nive sexangula (Gottfried. Tampach, Frankfurt, 1611).Google Scholar
[28] , , , , , , , , , , , and , ‘seL4: formal verification of an OS kernel’, inProc. 22nd ACM Symposium on Operating Systems Principles 2009 (eds. and ) (ACM, 2009), 207–220.Google Scholar
[29] , , and , ‘HOL with definitions: semantics, soundness, and a verified implementation’, inInteractive Theorem Proving – 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings (eds. and ) Lecture Notes in Computer Science, 8558 (Springer, 2014), 308–324. ISBN 978-3-319-08969-0..Google Scholar | DOI
[30] , The Kepler Conjecture and its Proof (Springer, 2009), 3–26.Google Scholar
[31] , ‘Formal certification of a compiler back-end, or: programming a compiler with a proof assistant’, inACM SIGPLAN Notices 41, (2006), 42–54. http://compcert.inria.fr/.Google Scholar
[32] , ‘Formal proofs for global optimization – templates and sums of squares’. PhD Thesis, École Polytechnique, 2013.Google Scholar
[33] , ‘Study of the Kepler’s conjecture: the problem of the closest packing’, Math. Z. 267(3–4) (2011), 737–765. ISSN 0025-5874.Google Scholar | DOI
[34] , ‘An interpretation of Isabelle/HOL in HOL Light’, inIJCAR (eds. and ) Lecture Notes in Computer Science, 4130 (Springer, 2006), 192–204.Google Scholar
[35] , and , Introduction to Interval Analysis (SIAM, 2009).Google Scholar
[36] , ‘Verified efficient enumeration of plane graphs modulo isomorphism’, inInteractive Theorem Proving (ITP 2011) (eds. , , and ) Lecture Notes in Computer Science, 6898 (Springer, 2011), 281–296.Google Scholar
[37] , and , Isabelle/HOL – A Proof Assistant for Higher-Order Logic, Lecture Notes in Computer Science, 2283 (Springer, 2002), http://www.in.tum.de/∼nipkow/LNCS2283/.Google Scholar
[38] , and , ‘Flyspeck I: Tame graphs’, inAutomated Reasoning (IJCAR 2006) (eds. and ) Lecture Notes in Computer Science, 4130 (Springer, 2006), 21–35.Google Scholar
[39] , ‘Proving bounds for real linear programs in Isabelle/HOL’, inTheorem Proving in Higher Order Logics (eds. and ) Lecture Notes in Computer Science, 3603 (Springer, 2005), 227–244.Google Scholar | DOI
[40] , ‘Flyspeck II: the basic linear programs’. PhD Thesis, Technische Universität München, 2008.Google Scholar
[41] and , ‘Flyspeck II: the basic linear programs’, Ann. Math. Artif. Intell. 56(3–4) (2009).Google Scholar
[42] and , ‘Importing HOL into Isabelle/HOL’, inAutomated Reasoning, Lecture Notes in Computer Science, 4130 (Springer, 2006), 298–302.Google Scholar
[43] , ‘Formal methods and computations’. PhD Thesis, University of Pittsburgh, 2012. http://d-scholarship.pitt.edu/16721/.Google Scholar
[44] and , Efficient Formal Verification of Bounds of Linear Programs, Lecture Notes in Computer Science, 6824 (Springer, 2011), 123–132.Google Scholar
[45] and , ‘Formal verification of nonlinear inequalities with Taylor interval approximations’, inNFM, Lecture Notes in Computer Science, 7871 (Springer, 2013), 383–397.Google Scholar
[46] , ‘GNU parallel – the command-line power tool’, USENIX Mag. 36(1) (2011), 42–47. URL http://www.gnu.org/s/parallel.Google Scholar
[47] , , and , ‘Formal mathematics on display: A wiki for Flyspeck’, inMKM/Calculemus/DML (eds. , , , and ) Lecture Notes in Computer Science, 7961 (Springer, 2013), 152–167. ISBN 978-3-642-39319-8.Google Scholar
[48] , ‘Global optimization in type theory’. PhD Thesis, École Polytechnique Paris, 2008.Google Scholar
Cité par Sources :
