FINITELY DEPENDENT COLORING
Forum of Mathematics, Pi, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that proper coloring distinguishes between block factors and finitely dependent stationary processes. A stochastic process is finitely dependent if variables at sufficiently well-separated locations are independent; it is a block factor if it can be expressed as an equivariant finite-range function of independent variables. The problem of finding non-block-factor finitely dependent processes dates back to 1965. The first published example appeared in 1993, and we provide arguably the first natural examples. Schramm proved in 2008 that no stationary 1-dependent 3-coloring of the integers exists, and asked whether a $k$ -dependent $q$ -coloring exists for any $k$ and $q$ . We give a complete answer by constructing a 1-dependent 4-coloring and a 2-dependent 3-coloring. Our construction is canonical and natural, yet very different from all previous schemes. In its pure form it yields precisely the two finitely dependent colorings mentioned above, and no others. The processes provide unexpected connections between extremal cases of the Lovász local lemma and descent and peak sets of random permutations. Neither coloring can be expressed as a block factor, nor as a function of a finite-state Markov chain; indeed, no stationary finitely dependent coloring can be so expressed. We deduce extensions involving $d$ dimensions and shifts of finite type; in fact, any nondegenerate shift of finite type also distinguishes between block factors and finitely dependent processes.
@article{10_1017_fmp_2016_7,
     author = {ALEXANDER E. HOLROYD and THOMAS M. LIGGETT},
     title = {FINITELY {DEPENDENT} {COLORING}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fmp.2016.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.7/}
}
TY  - JOUR
AU  - ALEXANDER E. HOLROYD
AU  - THOMAS M. LIGGETT
TI  - FINITELY DEPENDENT COLORING
JO  - Forum of Mathematics, Pi
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.7/
DO  - 10.1017/fmp.2016.7
LA  - en
ID  - 10_1017_fmp_2016_7
ER  - 
%0 Journal Article
%A ALEXANDER E. HOLROYD
%A THOMAS M. LIGGETT
%T FINITELY DEPENDENT COLORING
%J Forum of Mathematics, Pi
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.7/
%R 10.1017/fmp.2016.7
%G en
%F 10_1017_fmp_2016_7
ALEXANDER E. HOLROYD; THOMAS M. LIGGETT. FINITELY DEPENDENT COLORING. Forum of Mathematics, Pi, Tome 4 (2016). doi: 10.1017/fmp.2016.7

[1] Aaronson, J., Gilat, D. and Keane, M., ‘On the structure of 1-dependent Markov chains’, J. Theoret. Probab. 5(3) (1992), 545–561.Google Scholar

[2] Aaronson, J., Gilat, D., Keane, M. and De Valk, V., ‘An algebraic construction of a class of one-dependent processes’, Ann. Probab. 17(1) (1989), 128–143.Google Scholar

[3] Alon, N. and Feldheim, O. N., ‘A note on general sliding window processes’, Electron. Commun. Probab. 19(66) (2014), 1–7.Google Scholar

[4] Alon, N. and Spencer, J. H., The Probabilistic Method, 3rd edn, Wiley-Interscience Series in Discrete Mathematics and Optimization , (John Wiley & Sons, Inc., Hoboken, NJ, 2008), With an appendix on the life and work of Paul Erdős.Google Scholar

[5] Billey, S., Burdzy, K. and Sagan, B. E., ‘Permutations with given peak set’, J. Integer Seq. 16(6) (2013), Article 13.6.1, 18.Google Scholar

[6] Borodin, A., Diaconis, P. and Fulman, J., ‘On adding a list of numbers (and other one-dependent determinantal processes)’, Bull. Amer. Math. Soc. (N.S.) 47(4) (2010), 639–670.Google Scholar

[7] Broman, E. I., ‘One-dependent trigonometric determinantal processes are two-block-factors’, Ann. Probab. 33(2) (2005), 601–609.Google Scholar

[8] Burton, R. M., Goulet, M. and Meester, R., ‘On 1-dependent processes and k-block factors’, Ann. Probab. 21(4) (1993), 2157–2168.Google Scholar

[9] De Valk, V., ‘A problem on 0-1 matrices’, Compositio Math. 71(2) (1989), 139–179.Google Scholar

[10] De Valk, V., ‘Hilbert space representations of m-dependent processes’, Ann. Probab. 21(3) (1993), 1550–1570.Google Scholar

[11] Duminil-Copin, H. and Tassion, V., ‘A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model’, Comm. Math. Phys. 343(2) (2016), 725–745.Google Scholar

[12] Edelman, P., Hibi, T. and Stanley, R. P., ‘A recurrence for linear extensions’, Order 6(1) (1989), 15–18.Google Scholar

[13] Erdős, P. and Lovász, L., ‘Problems and results on 3-chromatic hypergraphs and some related questions’, inInfinite and Finite Sets, Vol. II, Colloq. Math. Soc. János Bolyai, 10 (North-Holland, Amsterdam, 1975), 609–627.Google Scholar

[14] Flajolet, P. and Sedgewick, R., Analytic Combinatorics (Cambridge University Press, Cambridge, 2009).Google Scholar

[15] Gandolfi, A., Keane, M. and De Valk, V., ‘Extremal two-correlations of two-valued stationary one-dependent processes’, Probab. Theory Related Fields 80(3) (1989), 475–480.Google Scholar

[16] Götze, F. and Hipp, C., ‘Asymptotic expansions for potential functions of i.i.d. random fields’, Probab. Theory Related Fields 82(3) (1989), 349–370.Google Scholar

[17] Haiman, M. G., ‘Valeurs extrémales de suites stationnaires de variables aléatoires m-dépendantes’, Ann. Inst. H. Poincaré Sect. B (N.S.) 17(3) (1981), 309–330.Google Scholar

[18] Heinrich, L., ‘Asymptotic expansions in the central limit theorem for a special class of m-dependent random fields. II. Lattice case’, Math. Nachr. 145 (1990), 309–327.Google Scholar

[19] Hoeffding, W. and Robbins, H., ‘The central limit theorem for dependent random variables’, Duke Math. J. 15 (1948), 773–780.Google Scholar

[20] Holroyd, A. E., One-dependent coloring by finitary factors. Ann. Inst. Henri Poincaré, arXiv:1411.1463.Google Scholar

[21] Holroyd, A. E. and Liggett, T. M., ‘Symmetric 1-dependent colorings of the integers’, Electron. Commun. Probab. 20(31) (2015), 1–8.Google Scholar

[22] Holroyd, A. E., Schramm, O. and Wilson, D. B., Finitary coloring. Ann. Probab., arXiv:1412.2725.Google Scholar

[23] Ibragimov, I. A. and Linnik, Yu. V., Nezavisimye stalionarno svyazannye velichiny, Izdat , (Nauka, Moscow, 1965).Google Scholar

[24] Ibragimov, I. A. and Linnik, Yu. V., Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff Publishing, Groningen, 1971), With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman.Google Scholar

[25] Janson, S., ‘Renewal theory for M-dependent variables’, Ann. Probab. 11(3) (1983), 558–568.Google Scholar

[26] Janson, S., ‘Runs in m-dependent sequences’, Ann. Probab. 12(3) (1984), 805–818.Google Scholar

[27] Janson, S., ‘On degenerate sums of m-dependent variables’, J. Appl. Probab. 52(4) (2015), 1146–1155.Google Scholar

[28] Kallenberg, O., Foundations of Modern Probability, 2nd edn, Probability and its Applications (Springer, New York, 2002).Google Scholar

[29] Karlin, S., Total Positivity, Vol. I (Stanford University Press, Stanford, CA, 1968).Google Scholar

[30] Lax, P. D., Functional Analysis, Pure and Applied Mathematics (Wiley-Interscience, New York, 2002).Google Scholar

[31] Levit, V. E. and Mandrescu, E., ‘The independence polynomial of a graph—a survey’, inProceedings of the 1st International Conference on Algebraic Informatics (Aristotle Univ. Thessaloniki, Thessaloniki, 2005), 233–254.Google Scholar

[32] Liggett, T. M., Schonmann, R. H. and Stacey, A. M., ‘Domination by product measures’, Ann. Probab. 25(1) (1997), 71–95.Google Scholar

[33] Linial, N., ‘Distributive graph algorithms—global solutions from local data’, in28th Annual Symposium on Foundations of Computer Science (IEEE, 1987), 331–335.Google Scholar

[34] Mallows, C. and Shepp, L., ‘The necklace process’, J. Appl. Probab. 45(1) (2008), 271–278.Google Scholar

[35] Matúš, F., ‘On two-block-factor sequences and one-dependence’, Proc. Amer. Math. Soc. 124(4) (1996), 1237–1242.Google Scholar

[36] Matúš, F., ‘Combining m-dependence with Markovness’, Ann. Inst. Henri Poincaré Probab. Stat. 34(4) (1998), 407–423.Google Scholar

[37] Nakata, T., ‘Necklace processes via Pólya urns’, J. Appl. Probab. 46(1) (2009), 284–295.Google Scholar

[38] Naor, M., ‘A lower bound on probabilistic algorithms for distributive ring coloring’, SIAM J. Discrete Math. 4(3) (1991), 409–412.Google Scholar

[39] Niven, I., ‘A combinatorial problem of finite sequences’, Nieuw Arch. Wiskd. (3) 16 (1968), 116–123.Google Scholar

[40] O’Brien, G. L., ‘Scaling transformations for {0, 1}-valued sequences’, Z. Wahrsch. Verw. Gebiete 53(1) (1980), 35–49.Google Scholar

[41] Rüschendorf, L. and De Valk, V., ‘On regression representations of stochastic processes’, Stochastic Process. Appl. 46(2) (1993), 183–198.Google Scholar

[42] Scott, A. D. and Sokal, A. D., ‘The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma’, J. Stat. Phys. 118(5–6) (2005), 1151–1261.Google Scholar

[43] Scott, A. D. and Sokal, A. D., ‘On dependency graphs and the lattice gas’, Combin. Probab. Comput. 15(1–2) (2006), 253–279.Google Scholar

[44] Shearer, J. B., ‘On a problem of Spencer’, Combinatorica 5(3) (1985), 241–245.Google Scholar

[45] Titchmarsh, E. C., The Theory of Functions (Oxford University Press, 1939).Google Scholar

[46] Todo, S., ‘Transfer-matrix study of negative-fugacity singularity of hard-core lattice gas’, Internat. J. Modern Phys. C 10(4) (1999), 517–529.Google Scholar

Cité par Sources :