Voir la notice de l'article provenant de la source Cambridge University Press
| $\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D706}(a_{1}n+b_{1})\unicode[STIX]{x1D706}(a_{2}n+b_{2})=o(x)\end{eqnarray}$ |
| $\begin{eqnarray}\mathop{\sum }_{x/\unicode[STIX]{x1D714}(x)$ |
@article{10_1017_fmp_2016_6,
author = {TERENCE TAO},
title = {THE {LOGARITHMICALLY} {AVERAGED} {CHOWLA} {AND} {ELLIOTT} {CONJECTURES} {FOR} {TWO-POINT} {CORRELATIONS}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {4},
year = {2016},
doi = {10.1017/fmp.2016.6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.6/}
}
TY - JOUR AU - TERENCE TAO TI - THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS JO - Forum of Mathematics, Pi PY - 2016 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.6/ DO - 10.1017/fmp.2016.6 LA - en ID - 10_1017_fmp_2016_6 ER -
TERENCE TAO. THE LOGARITHMICALLY AVERAGED CHOWLA AND ELLIOTT CONJECTURES FOR TWO-POINT CORRELATIONS. Forum of Mathematics, Pi, Tome 4 (2016). doi: 10.1017/fmp.2016.6
[1] , , and , ‘The Chowla and the Sarnak conjectures from ergodic theory point of view’. Preprint, 2014, arXiv:1410.1673.Google Scholar
[2] , Ergodic Theory and Information, (Robert E. Krieger Publishing Co., Huntington, NY, 1978). Reprint of the 1965 original.Google Scholar
[3] , The Riemann Hypothesis and Hilbert’s Tenth Problem, (Gordon and Breach, New York, 1965).Google Scholar
[4] , ‘On the correlation of multiplicative functions’, Notas Soc. Mat. Chile, Notas de la Sociedad de Matemática de Chile 11 (1992), 1–11.Google Scholar
[5] , ‘Some unsolved problems’, Michigan Math. J. 4 (1957), 299–300.Google Scholar
[6] , ‘An averaged Chowla and Elliott conjecture along independent polynomials’. Preprint, 2016, arXiv:1606.08420.Google Scholar | DOI
[7] and , ‘Higher order Fourier analysis of multiplicative functions and applications’. Preprint, 2014, arXiv:1403.0945.Google Scholar
[8] and , ‘Asymptotics for multilinear averages of multiplicative functions’, Math. Proc. Cambridge Philos. Soc. 161(1) (2016), 87–101.Google Scholar | DOI
[9] , and , ‘Multiple recurrence and convergence for sequences related to the prime numbers’, J. Reine Angew. Math. 611 (2007), 131–144.Google Scholar
[10] and , ‘The polynomial X 2 + Y 4 captures its primes’, Ann. of Math. (2) 148(3) (1998), 945–1040.Google Scholar | DOI
[11] and , Opera de Cribro, American Mathematical Society Colloquium Publications, 57 (American Mathematical Society, Providence, RI, 2010).Google Scholar | DOI
[12] and , ‘Decay of mean values of multiplicative functions’, Canad. J. Math. 55(6) (2003), 1191–1230.Google Scholar | DOI
[13] and , ‘Restriction theory of the Selberg sieve, with applications’, J. Théor. Nombres Bordeaux 18(1) (2006), 147–182.Google Scholar
[14] and , ‘Linear equations in primes’, Ann. of Math. (2) 171(3) (2010), 1753–1850.Google Scholar
[15] , and , ‘An inverse theorem for the Gowers U s+1[N]-norm’, Ann. of Math. (2) 176(2) (2012), 1231–1372.Google Scholar
[16] , and , ‘A note on the Möbius and Liouville functions’, Studia Sci. Math. Hungar. 20(1–4) (1985), 295–299.Google Scholar
[17] , ‘On consecutive values of the Liouville function’, Enseign. Math. (2) 32(3–4) (1986), 219–226.Google Scholar
[18] , ‘Probability inequalities for sums of bounded random variables’, J. Amer. Stat. Assoc. 58 (1963), 13–30.Google Scholar
[19] and , Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
[20] , ‘Correlations of multiplicative functions and applications’. Preprint, 2016, arXiv:1603.084533.Google Scholar
[21] and , ‘Multiplicative functions in short intervals’, Ann. of Math. (2) 183(3) (2016), 1015–1056.Google Scholar
[22] and , ‘A note on the Liouville function in short intervals’. Preprint, 2015, arXiv:1502.02374.Google Scholar
[23] , and , ‘An averaged form of Chowla’s conjecture’, Algebra Number Theory 9 (2015), 2167–2196.Google Scholar | DOI
[24] , and , ‘Sign patterns of the Möbius and Liouville functions’, Forum Math. Sigma 4 (2016), e14, 44 pp.Google Scholar | DOI
[25] , Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, 84 (American Mathematical Society, Providence, RI, 1994). Published for the Conference Board of the Mathematical Sciences, Washington, DC.Google Scholar | DOI
[26] and , ‘A constructive proof of the general Lovász local lemma’, J. ACM 57(2) (2010), Art. 11, 15 pp.Google Scholar
[27] , ‘The Erdős discrepancy problem’, michaelnielsen.org/polymath1/index.php?title=The_Erd%C5%91s_discrepancy_problem.Google Scholar
[28] , ‘Three lectures on the Möbius function randomness and dynamics’, 2010, publications.ias.edu/sarnak/paper/506.Google Scholar
[29] , ‘The ergodic and combinatorial approaches to Szemerédi’s theorem’, inAdditive Combinatorics, CRM Proc. Lecture Notes, 43 (American Mathematical Society, Providence, RI, 2007), 145–193.Google Scholar
[30] , ‘The Erdős discrepancy problem’, Discrete Anal. 1 (2016), 29 pp.Google Scholar
[31] , ‘Equivalence of the logarithmically averaged Chowla and Sarnak conjectures’. Preprint, 2016, arXiv:1605.04628.Google Scholar
[32] , Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics, 46 (Cambridge University Press, Cambridge, 1995). Translated from the second French edition (1995) by C. B. Thomas.Google Scholar
[33] and , ‘Multiple recurrence and convergence along the primes’, Amer. J. Math. 134(6) (2012), 1705–1732.Google Scholar | DOI
Cité par Sources :