Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2016_5,
author = {MICHAEL BRAUN and TUVI ETZION and PATRIC R. J. \"OSTERG\r{A}RD and ALEXANDER VARDY and ALFRED WASSERMANN},
title = {EXISTENCE {OF} $q$ {-ANALOGS} {OF} {STEINER} {SYSTEMS}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {4},
year = {2016},
doi = {10.1017/fmp.2016.5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.5/}
}
TY - JOUR AU - MICHAEL BRAUN AU - TUVI ETZION AU - PATRIC R. J. ÖSTERGÅRD AU - ALEXANDER VARDY AU - ALFRED WASSERMANN TI - EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS JO - Forum of Mathematics, Pi PY - 2016 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.5/ DO - 10.1017/fmp.2016.5 LA - en ID - 10_1017_fmp_2016_5 ER -
%0 Journal Article %A MICHAEL BRAUN %A TUVI ETZION %A PATRIC R. J. ÖSTERGÅRD %A ALEXANDER VARDY %A ALFRED WASSERMANN %T EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS %J Forum of Mathematics, Pi %D 2016 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.5/ %R 10.1017/fmp.2016.5 %G en %F 10_1017_fmp_2016_5
MICHAEL BRAUN; TUVI ETZION; PATRIC R. J. ÖSTERGÅRD; ALEXANDER VARDY; ALFRED WASSERMANN. EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS. Forum of Mathematics, Pi, Tome 4 (2016). doi: 10.1017/fmp.2016.5
[1] and , ‘Difference families’, inHandbook of Combinatorial Designs, 2nd edn, (eds. and ) (Chapman & Hall/CRC, Boca Raton, 2007), 392–410.Google Scholar
[2] and , ‘BIBDs with small block size’, inHandbook of Combinatorial Designs, 2nd edn, (eds. and ) (Chapman & Hall/CRC, Boca Raton, 2007), 72–79.Google Scholar
[3] , and , ‘On perfect codes and related concepts’, Des. Codes Cryptogr. 22 (2001), 221–237.Google Scholar | DOI
[4] , Linear Algebra and Projective Geometry (Academic Press, New York, 1952).Google Scholar
[5] , and , Design Theory, 2nd edn, Vol. I. (Cambridge University Press, Cambridge, 1999).Google Scholar
[6] , ‘Parallelismen in unendlichen projektiven Raumen endlicher Dimension’, Geom. Dedicata 7 (1978), 499–506.Google Scholar | DOI
[7] , and , ‘Systematic construction of q-analogs of designs’, Des. Codes Cryptogr. 34 (2005), 55–70.Google Scholar | DOI
[8] , ‘Generalisation of Fisher’s inequality to fields with more than one element’, inCombinatorics, (eds. and ) London Math. Soc. Lecture Note, 13 (Cambridge University Press, Cambridge, 1974), 9–13.Google Scholar | DOI
[9] , ‘Locally symmetric designs’, Geom. Dedicata 3 (1974), 65–76.Google Scholar | DOI
[10] , ‘On the triadic arrangements of seven and fifteen things’, Philos. Mag. 37 (1850), 50–53.Google Scholar
[11] , ‘Projective geometry over F and the Gaussian binomial coefficients’, Amer. Math. Monthly 111 (2004), 487–495.Google Scholar
[12] and (Eds.), Handbook of Combinatorial Designs, 2nd edn, (Chapman & Hall/CRC, Boca Raton, 2007).Google Scholar
[13] and , ‘Remarks on Singer cyclic groups and their normalizers’, Des. Codes Cryptogr. 32 (2004), 97–102.Google Scholar | DOI
[14] , ‘Association schemes and t-designs in regular semilattices’, J. Combin. Theory Ser. A 20 (1976), 230–243.Google Scholar | DOI
[15] , ‘Maximal subgroups of symplectic groups stabilizing spreads II’, J. Lond. Math. Soc. 40(2) (1989), 215–226.Google Scholar | DOI
[16] , ‘Covering of subspaces by subspaces’, Des. Codes Cryptogr. 72 (2014), 405–421.Google Scholar | DOI
[17] and , ‘Error-correcting codes in projective space’, IEEE Trans. Inform. Theory 57 (2011), 1165–1173.Google Scholar | DOI
[18] and , ‘On q-analogs for Steiner systems and covering designs’, Adv. Math. Commun. 5 (2011), 161–176.Google Scholar
[19] , ‘Consideratio quarumdam serierum quae singularibus proprietatibus sunt praeditae’, Novi Comment. Acad. Sci. Petropolitanae 3(1750–1751) 10–12. 86–108; Opera Omnia, Ser. I, vol. 14, B. G. Teubner, Leipzig, 1925, pp. 516–541.Google Scholar
[20] , and , ‘Nontrivial t-designs over finite fields exist for all t ’, J. Combin. Theory Ser. A 127 (2014), 149–160.Google Scholar | DOI
[21] and , ‘On the foundations of combinatorial theory IV: finite vector spaces and Eulerian generating functions’, Stud. Appl. Math. 49 (1970), 239–258.Google Scholar | DOI
[22] , ‘Some balanced incomplete block design constructions’, Congr. Numer. 77 (1990), 121–134.Google Scholar
[23] , ‘A class of three-designs’, J. Combin. Theory Ser. A 26 (1979), 1–19.Google Scholar | DOI
[24] , , , , , and , ‘A random linear network coding approach to multicast’, IEEE Trans. Inform. Theory 52 (2006), 4413–4430.Google Scholar | DOI
[25] , Endliche Gruppen I (Springer, Berlin, 1967).Google Scholar | DOI
[26] , ‘Linear groups containing a Singer cycle’, J. Algebra 62 (1980), 232–234.Google Scholar | DOI
[27] and , Classification Algorithms for Codes and Designs (Springer, Berlin, 2006).Google Scholar
[28] and , ‘Libexact user guide, Version 1.0’, HIIT Technical Reports 2008-1, Helsinki Institute for Information Technology, 2008.Google Scholar
[29] , ‘The existence of designs’, Preprint 2014, arXiv:1401.3665.Google Scholar
[30] and , ‘Derived and residual subspace designs’, Adv. Math. Commun. 9 (2015), 105–115.Google Scholar | DOI
[31] , ‘On a problem in combinations’, Cambridge Dublin Math. J. II (1847), 191–204.Google Scholar
[32] , ‘Dancing links’, inMillennial Perspectives in Computer Science (eds. , and ) (Palgrave Macmillan, Basingstoke, 2000), 187–214.Google Scholar
[33] and , ‘Leonhard Euler and a q-analogue of the logarithm’, Proc. Amer. Math. Soc. 137 (2009), 1663–1676.Google Scholar | DOI
[34] and , ‘Coding for errors and erasures in random network coding’, IEEE Trans. Inform. Theory 54 (2008), 3579–3591.Google Scholar | DOI
[35] and , ‘Construction of large constant dimension codes with a prescribed minimum distance’, inMathematical Methods in Computer Science, (eds. , and ) Lecture Notes in Computer Science, 5393 (Springer, Berlin, 2008), 31–42.Google Scholar | DOI
[36] and , ‘ t-designs on hypergraphs’, Discrete Math. 15 (1976), 263–296.Google Scholar | DOI
[37] , ‘Eine konstruktive Version des Lemmas von Burnside’, Bayreuther Math. Schr. 28 (1989), 111–125.Google Scholar
[38] and , A Course in Combinatorics, 2nd edn (Cambridge University Press, Cambridge, 2001).Google Scholar | DOI
[39] , ‘Bose-Burton type theorems for finite projective, affine and polar spaces’, inSurveys in Combinatorics (eds. and ) London Math. Soc. Lecture Note, 267 (Cambridge University Press, Cambridge, 1999), 137–166.Google Scholar
[40] , and , ‘On a class of small 2-designs over GF(q)’, J. Combin. Des. 3 (1995), 61–77.Google Scholar | DOI
[41] , System der analytischen Geometrie: auf neue Betrachtungsweisen gegründet, und insbesondere eine ausführliche Theorie der Curven dritter Ordnung enthaltend, (Duncker und Humblot, Berlin, 1835).Google Scholar
[42] and , ‘ q-analogues of t-designs and their existence’, Linear Algebra Appl. 114/115 (1989), 57–68.Google Scholar | DOI
[43] , ‘The t-designs with prescribed automorphism group, new simple 6-designs’, J. Combin. Des. 1 (1993), 125–170.Google Scholar | DOI
[44] and , ‘Codes and anticodes in the Grassmann graph’, J. Combin. Theory Ser. A 97 (2002), 27–42.Google Scholar | DOI
[45] , ‘Combinatorische Aufgabe’, J. reine angew. Math. 45 (1853), 181–182.Google Scholar
[46] , ‘2-designs over GF(2 m )’, Graphs Combin. 6 (1990), 293–296.Google Scholar | DOI
[47] , ‘2-designs over GF(q)’, Graphs Combin. 8 (1992), 381–389.Google Scholar | DOI
[48] , ‘Non-trivial t-designs without repeated blocks exist for all t ’, Discrete Math. 65 (1987), 301–311.Google Scholar | DOI
[49] , ‘Designs over finite fields’, Geom. Dedicata 21 (1987), 237–242.Google Scholar
[50] , ‘Designs and partial geometries over finite fields’, Geom. Dedicata 63 (1996), 247–253.Google Scholar | DOI
[51] , ‘Sur les analogues algébriques des groupes semi-simples complexes’, inColloque d’Algébre Supèrieure, tenu á Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick (Louvain, Paris, Librairie Gauthier-Villars, 1957), 261–289.Google Scholar
[52] , ‘Quotient sets and subset-subspace analogy’, Adv. Appl. Math. 23 (1999), 333–339.Google Scholar | DOI
[53] , ‘Cyclotomy and difference families in elementary abelian groups’, J. Number Theory 4 (1972), 17–47.Google Scholar | DOI
[54] , Information Theory and Network Coding (Springer, Berlin, 2008).Google Scholar
Cité par Sources :