$p$ -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES – CORRIGENDUM
Forum of Mathematics, Pi, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

The author would like to make some changes to the previously published article [1] by correcting two definitions.
@article{10_1017_fmp_2016_4,
     author = {PETER SCHOLZE},
     title = {$p$ {-ADIC} {HODGE} {THEORY} {FOR} {RIGID-ANALYTIC} {VARIETIES} {\textendash} {CORRIGENDUM}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fmp.2016.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.4/}
}
TY  - JOUR
AU  - PETER SCHOLZE
TI  - $p$ -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES – CORRIGENDUM
JO  - Forum of Mathematics, Pi
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.4/
DO  - 10.1017/fmp.2016.4
LA  - en
ID  - 10_1017_fmp_2016_4
ER  - 
%0 Journal Article
%A PETER SCHOLZE
%T $p$ -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES – CORRIGENDUM
%J Forum of Mathematics, Pi
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.4/
%R 10.1017/fmp.2016.4
%G en
%F 10_1017_fmp_2016_4
PETER SCHOLZE. $p$ -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES – CORRIGENDUM. Forum of Mathematics, Pi, Tome 4 (2016). doi: 10.1017/fmp.2016.4

[1] Scholze, P., ‘ p-adic Hodge theory for rigid-analytic varieties’, Forum Math. Pi 1 (2013), e1, doi:.Google Scholar | DOI

[2] Brinon, O., ‘Représentations p-adiques cristallines et de de Rham dans le cas relatif’, Mém. Soc. Math. Fr. (N.S.) (112) (2008), vi+159.Google Scholar

[3] Kerz, M., ‘Transfinite limits in topos theory’. Theory and Applications of Categories, arXiv:1502.01923, to appear.Google Scholar

[4] Ribes, L. and Zalesskii, P., ‘Profinite groups’, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 40 , (Springer, Berlin, 2010).Google Scholar

Cité par Sources :