THE ${\it\alpha}$ -INVARIANT AND THOMPSON’S CONJECTURE
Forum of Mathematics, Pi, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

In 1981, Thompson proved that, if $n\geqslant 1$ is any integer and $G$ is any finite subgroup of $\text{GL}_{n}(\mathbb{C})$ , then $G$ has a semi-invariant of degree at most $4n^{2}$ . He conjectured that, in fact, there is a universal constant $C$ such that for any $n\in \mathbb{N}$ and any finite subgroup $G\text{GL}_{n}(\mathbb{C})$ , $G$ has a semi-invariant of degree at most $Cn$ . This conjecture would imply that the ${\it\alpha}$ -invariant ${\it\alpha}_{G}(\mathbb{P}^{n-1})$ , as introduced by Tian in 1987, is at most $C$ . We prove Thompson’s conjecture in this paper.
@article{10_1017_fmp_2016_3,
     author = {PHAM HUU TIEP},
     title = {THE ${\it\alpha}$ {-INVARIANT} {AND} {THOMPSON{\textquoteright}S} {CONJECTURE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fmp.2016.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.3/}
}
TY  - JOUR
AU  - PHAM HUU TIEP
TI  - THE ${\it\alpha}$ -INVARIANT AND THOMPSON’S CONJECTURE
JO  - Forum of Mathematics, Pi
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.3/
DO  - 10.1017/fmp.2016.3
LA  - en
ID  - 10_1017_fmp_2016_3
ER  - 
%0 Journal Article
%A PHAM HUU TIEP
%T THE ${\it\alpha}$ -INVARIANT AND THOMPSON’S CONJECTURE
%J Forum of Mathematics, Pi
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.3/
%R 10.1017/fmp.2016.3
%G en
%F 10_1017_fmp_2016_3
PHAM HUU TIEP. THE ${\it\alpha}$ -INVARIANT AND THOMPSON’S CONJECTURE. Forum of Mathematics, Pi, Tome 4 (2016). doi: 10.1017/fmp.2016.3

[AS] Abramowitz, M. and Stegun, I. A. (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972).Google Scholar

[A] Aschbacher, M., ‘On the maximal subgroups of the finite classical groups’, Invent. Math. 76 (1984), 469–514.Google Scholar

[CS1] Cheltsov, I. and Shramov, K., ‘Log canonical thresholds of smooth Fano threefolds (with an appendix by J.-P. Demailly)’, Uspekhi Mat. Nauk 63(5) (2008), 73–180. English transl. Russian Math. Surveys (5) (2008), 859–958.Google Scholar

[CS2] Cheltsov, I. and Shramov, K., ‘On exceptional quotient singularities’, Geometry Topol. 15 (2011), 1843–1882.Google Scholar

[CS3] Cheltsov, I. and Shramov, K., ‘Six-dimensional exceptional quotient singularities’, Math. Res. Lett. 18 (2011), 1121–1139.Google Scholar | DOI

[CS4] Cheltsov, I. and Shramov, K., ‘Weakly-exceptional singularities in higher dimensions’, J. Reine Angew. Math. 689 (2014), 201–241.Google Scholar

[DK] Demailly, J.-P. and Kollár, J., ‘Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds’, Ann. Sci. Éc. Norm. Super. (4) 34 (2001), 525–556.Google Scholar

[FH] Fulton, W. and Harris, J., Representation Theory (Springer, New York, 1991).Google Scholar

[GAP] The GAP group, ‘GAP - groups, algorithms, and programming’, Version 4.4, 2004,http://www.gap-system.org.Google Scholar

[GM] Gluck, D. and Magaard, K., ‘Base sizes and regular orbits for coprime affine permutation groups’, J. Lond. Math. Soc. (2) 58 (1998), 603–618.Google Scholar

[GLS] Gorenstein, D., Lyons, R. and Solomon, R., The Classification of the Finite Simple Groups, Vol. 3, Mathematical Surveys and Monographs, 40 (American Mathematical Society, Providence, RI, 1998).Google Scholar

[GLT] Guralnick, R. M., Larsen, M. and Tiep, P. H., ‘Representation growth in positive characteristic and conjugacy classes of maximal subgroups’, Duke Math. J. 161 (2012), 107–137.Google Scholar

[GT1] Guralnick, R. M. and Tiep, P. H., ‘Cross characteristic representations of even characteristic symplectic groups’, Trans. Amer. Math. Soc. 356 (2004), 4969–5023.Google Scholar

[GT2] Guralnick, R. M. and Tiep, P. H., ‘Symmetric powers and a problem of Kollár and Larsen’, Invent. Math. 174 (2008), 505–554.Google Scholar

[GT3] Guralnick, R. M. and Tiep, P. H., ‘A problem of Kollár and Larsen on finite linear groups and crepant resolutions’, J. Eur. Math. Soc. 14 (2012), 605–657.Google Scholar

[JK] James, G. and Kerber, And A., The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16 (Addison-Wesley Publishing Co., Reading, MA, 1981).Google Scholar

[KL] Kleidman, P. B. and Liebeck, M. W., The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, 129 (Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1990).Google Scholar

[LBST] Liebeck, M. W., O’Brien, E. A., Shalev, A. and Tiep, P. H., ‘The Ore conjecture’, J. Eur. Math. Soc. 12 (2010), 939–1008.Google Scholar

[Lyn] Lyndon, R., ‘The cohomology theory of group extensions’, Duke Math. J. 15 (1948), 271–292.Google Scholar

[N] Noether, E., ‘Der Endlichkeitssatz der Invarianten endlicher Gruppen’, Math. Ann. 77 (1916), 89–92.Google Scholar

[St] Stanley, R., ‘Invariants of finite groups and their applications to combinatorics’, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475–511.Google Scholar

[Suz] Suzuki, M., Group Theory I (Springer, Berlin–Heidelberg–New York, 1982).Google Scholar

[Th] Thompson, J. G., ‘Invariants of finite groups’, J. Algebra 69 (1981), 143–145.Google Scholar | DOI

[Ti] Tian, G., ‘On Kähler–Einstein metrics on certain Kähler manifolds with c (M) > 0’, Invent. Math. 89 (1987), 225–246.Google Scholar

[TY] Tian, G. and Yau, S.-T., ‘Kähler–Einstein metrics metrics on complex surfaces with C > 0’, Comm. Math. Phys. 112 (1987), 175–203.Google Scholar

[T] Tiep, P. H., ‘Finite groups admitting grassmannian 4-designs’, J. Algebra 306 (2006), 227–243.Google Scholar

[TZ] Tiep, P. H. and Zalesskii, A. E., ‘Minimal characters of the finite classical groups’, Comm. Algebra 24 (1996), 2093–2167.Google Scholar

Cité par Sources :