THE KATZ–KLEMM–VAFA CONJECTURE FOR $K3$ SURFACES
Forum of Mathematics, Pi, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove the KKV conjecture expressing Gromov–Witten invariants of $K3$ surfaces in terms of modular forms. Our results apply in every genus and for every curve class. The proof uses the Gromov–Witten/Pairs correspondence for $K3$ -fibered hypersurfaces of dimension 3 to reduce the KKV conjecture to statements about stable pairs on (thickenings of) $K3$ surfaces. Using degeneration arguments and new multiple cover results for stable pairs, we reduce the KKV conjecture further to the known primitive cases. Our results yield a new proof of the full Yau–Zaslow formula, establish new Gromov–Witten multiple cover formulas, and express the fiberwise Gromov–Witten partition functions of $K3$ -fibered 3-folds in terms of explicit modular forms.
@article{10_1017_fmp_2016_2,
     author = {R. PANDHARIPANDE and R. P. THOMAS},
     title = {THE {KATZ{\textendash}KLEMM{\textendash}VAFA} {CONJECTURE} {FOR} $K3$ {SURFACES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fmp.2016.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.2/}
}
TY  - JOUR
AU  - R. PANDHARIPANDE
AU  - R. P. THOMAS
TI  - THE KATZ–KLEMM–VAFA CONJECTURE FOR $K3$ SURFACES
JO  - Forum of Mathematics, Pi
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.2/
DO  - 10.1017/fmp.2016.2
LA  - en
ID  - 10_1017_fmp_2016_2
ER  - 
%0 Journal Article
%A R. PANDHARIPANDE
%A R. P. THOMAS
%T THE KATZ–KLEMM–VAFA CONJECTURE FOR $K3$ SURFACES
%J Forum of Mathematics, Pi
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2016.2/
%R 10.1017/fmp.2016.2
%G en
%F 10_1017_fmp_2016_2
R. PANDHARIPANDE; R. P. THOMAS. THE KATZ–KLEMM–VAFA CONJECTURE FOR $K3$ SURFACES. Forum of Mathematics, Pi, Tome 4 (2016). doi: 10.1017/fmp.2016.2

[1] Altman, A., Iarrobino, A. and Kleiman, S., ‘Irreducibility of the compactified Jacobian’, inReal and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) (1977), 1–12.Google Scholar

[2] Behrend, K., ‘Gromov–Witten invariants in algebraic geometry’, Invent. Math. 127 (1997), 601–617.Google Scholar

[3] Behrend, K. and Fantechi, B., ‘The intrinsic normal cone’, Invent. Math. 128 (1997), 45–88.Google Scholar

[4] Beauville, A., ‘Counting rational curves on K3 surfaces’, Duke Math. J. 97 (1999), 99–108.Google Scholar

[5] Borcherds, R., ‘The Gross–Kohnen–Zagier theorem in higher dimensions’, Duke Math. J. 97 (1999), 219–233.Google Scholar

[6] Bridgeland, T., ‘Hall algebras and curve-counting invariants’, J. Amer. Math. Soc. 24 (2011), 969–998.Google Scholar

[7] Bryan, J., Katz, S. and Leung, C., ‘Multiple covers and the integrality conjecture for rational curves in Calabi–Yau threefolds’, J. Algebraic Geom. 10 (2001), 549–568.Google Scholar

[8] Bryan, J. and Leung, C., ‘The enumerative geometry of K3 surfaces and modular forms’, J. Amer. Math. Soc. 13 (2000), 371–410.Google Scholar | DOI

[9] Buchweitz, R.-O. and Flenner, H., ‘A semiregularity map for modules and applications to deformations’, Compos. Math. 137 (2003), 135–210.Google Scholar | DOI

[10] Candelas, P., De La Ossa, X., Green, P. and Parkes, L., ‘A pair of Calabi–Yau manifolds as an exactly soluble superconformal field theory’, Nuclear Phys. B 359 (1991), 21–74.Google Scholar

[11] Chen, X., ‘Rational curves on K3 surfaces’, J. Algebraic Geom. 8 (1999), 245–278.Google Scholar

[12] Dolgachev, I. and Kondo, S., ‘Moduli of surfaces and complex ball quotients, Lectures in Istambul’, Preprint, 2005, arXiv:math.AG/0511051.Google Scholar

[13] Faber, C. and Pandharipande, R., ‘Hodge integrals and Gromov–Witten theory’, Invent. Math. 139 (2000), 173–199.Google Scholar

[14] Fantechi, B., Göttsche, L. and Van Straten, D., ‘Euler number of the compactified Jacobian and multiplicity of rational curves’, J. Algebraic Geom. 8 (1999), 115–133.Google Scholar

[15] Fulton, W., Intersection Theory (Springer, Berlin, 1998).Google Scholar

[16] Gopakumar, R. and Vafa, C., ‘-theory and topological strings I’, Preprint, 1998, arXiv:hep-th/9809187.Google Scholar

[17] Gopakumar, R. and Vafa, C., ‘-theory and topological strings II’, Preprint, 1998, arXiv:hep-th/9812127.Google Scholar

[18] Graber, T. and Pandharipande, R., ‘Localization of virtual classes’, Invent. Math. 135 (1999), 487–518.Google Scholar

[19] Huybrechts, D., Lectures on K3 Surfaces (Cambridge University Press, Cambridge, 2016).Google Scholar

[20] Huybrechts, D. and Thomas, R. P., ‘Deformation-obstruction theory for complexes via Atiyah and Kodaira–Spencer classes’, Math. Ann. 346 (2010), 545–569.Google Scholar

[21] Illusie, L., Complexe cotangent et déformations I, Lecture Notes in Mathematics, 239 (Springer, Berlin, 1971).Google Scholar

[22] Joyce, D. and Song, Y., A Theory of Generalized Donaldson–Thomas Invariants, Memoirs of the American Mathematical Society, 217 (American Mathematical Society, 2012), iv+199 pp.Google Scholar

[23] Katz, S., Klemm, A. and Pandharipande, R., ‘On the motivic stable pairs invariants of K3 surfaces, with an appendix by R. Thomas’, inK3 Surfaces and their Moduli (eds. Faber, C., Farkas, G. and Van Der Geer, G.) Birkhauser Progress in Mathematics, 315 (Birkhäuser, Basel, 2016), 111–146.Google Scholar

[24] Katz, S., Klemm, A. and Vafa, C., ‘ M-theory, topological strings, and spinning black holes’, Adv. Theor. Math. Phys. 3 (1999), 1445–1537.Google Scholar

[25] Kawai, T. and Yoshioka, K., ‘String partition functions and infinite products’, Adv. Theor. Math. Phys. 4 (2000), 397–485.Google Scholar

[26] Kiem, Y. H. and Li, J., ‘Localized virtual cycles by cosections’, J. Amer. Math. Soc. 26 (2013), 1025–1050.Google Scholar

[27] Klemm, A., Kreuzer, M., Riegler, E. and Scheidegger, E., ‘Topological string amplitudes, complete intersections Calabi–Yau spaces, and threshold corrections’, J. High Energy Phys. 05 023 (2005).Google Scholar

[28] Klemm, A., Maulik, D., Pandharipande, R. and Scheidegger, E., ‘Noether–Lefschetz theory and the Yau–Zaslow conjecture’, J. Amer. Math. Soc. 23 (2010), 1013–1040.Google Scholar

[29] Kool, M. and Thomas, R. P., ‘Reduced classes and curve counting on surfaces I: theory’, Algebr. Geom. 1 (2014), 334–383.Google Scholar | DOI

[30] Kool, M. and Thomas, R. P., ‘Reduced classes and curve counting on surfaces II: calculations’, Algebr. Geom. 1 (2014), 384–399.Google Scholar | DOI

[31] Kudla, S. and Millson, J., ‘Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables’, Pub. IHES 71 (1990), 121–172.Google Scholar | DOI

[32] Lee, J. and Leung, C., ‘Yau–Zaslow formula for non-primitive classes in K3 surfaces’, Geom. Topol. 9 (2005), 1977–2012.Google Scholar | DOI

[33] Li, J., ‘Stable morphisms to singular schemes and relative stable morphisms’, J. Differential Geom. 57 (2001), 509–578.Google Scholar

[34] Li, J., ‘A degeneration formula for Gromov–Witten invariants’, J. Differential Geom. 60 (2002), 199–293.Google Scholar

[35] Li, J. and Wu, B., ‘Good degeneration of Quot-schemes and coherent systems’, Preprint, 2011, arXiv:1110.0390.Google Scholar

[36] Maulik, D. and Pandharipande, R., ‘Gromov–Witten theory and Noether–Lefschetz theory’, inA Celebration of Algebraic Geometry, Clay Mathematics Proceedings, 18 (AMS, Providence, RI, 2010), 469–507.Google Scholar

[37] Maulik, D., Pandharipande, R. and Thomas, R., ‘Curves on K3 surfaces and modular forms’, J. Topol. 3 (2010), 937–996.Google Scholar

[38] Oberdieck, G. and Pandharipande, R., ‘Curve counting on K3 × E, the Igusa cusp form 𝜒 , and descendent integration’, in K3 Surfaces and their Moduli (eds. Faber, C., Farkas, G. and Van Der Geer, G.) Birkhauser Progress in Mathematics, 315 (Birkhäuser, Basel, 2016), 245–278.Google Scholar

[39] Pandharipande, R. and Pixton, A., ‘Gromov–Witten/Pairs correspondence for the quintic 3-fold’, J. Amer. Math. Soc. (2016), doi:.Google Scholar | DOI

[40] Pandharipande, R. and Thomas, R. P., ‘Curve counting via stable pairs in the derived category’, Invent. Math. 178 (2009), 407–447.Google Scholar

[41] Pandharipande, R. and Thomas, R. P., ‘Stable pairs and BPS invariants’, J. Amer. Math. Soc. 23 (2010), 267–297.Google Scholar

[42] Pridham, J., ‘Semiregularity as a consequence of Goodwillie’s theorem’, Preprint, 2012, arXiv:1208.3111.Google Scholar

[43] Schürg, T., Toën, B. and Vezzosi, G., ‘Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes’, Preprint, 2011, arXiv:1102.1150.Google Scholar

[44] Siebert, B., ‘An update on (small) quantum cohomology’, inMirror Symmetry, III (Montreal, PQ, 1995), AMS/IP Studies in Advanced Mathematics, 10 (American Mathematical Society, Providence, RI, 1999), 279–312.Google Scholar

[45] Toda, Y., ‘Curve counting theories via stable objects I. DT/PT correspondence’, J. Amer. Math. Soc. 23 (2010), 1119–1157.Google Scholar

[46] Toda, Y., ‘Stable pairs on local K3 surfaces’, J. Differential Geom. 92 (2012), 285–370.Google Scholar

[47] Wall, C. T. C., ‘On the orthogonal groups of unimodular quadratic forms’, Math. Ann. 147 (1962), 328–338.Google Scholar

[48] Yau, S.-T. and Zaslow, E., ‘BPS states, string duality, and nodal curves on K3’, Nuclear Phys. B 457 (1995), 484–512.Google Scholar

Cité par Sources :