GLOBAL UNIQUENESS FOR THE CALDERÓN PROBLEM WITH LIPSCHITZ CONDUCTIVITIES
Forum of Mathematics, Pi, Tome 4 (2016)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove uniqueness for the Calderón problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the three- and four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for $C^{1}$ -conductivities and Lipschitz conductivities sufficiently close to the identity.
@article{10_1017_fmp_2015_9,
     author = {PEDRO CARO and KEITH M. ROGERS},
     title = {GLOBAL {UNIQUENESS} {FOR} {THE} {CALDER\'ON} {PROBLEM} {WITH} {LIPSCHITZ} {CONDUCTIVITIES}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {4},
     year = {2016},
     doi = {10.1017/fmp.2015.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.9/}
}
TY  - JOUR
AU  - PEDRO CARO
AU  - KEITH M. ROGERS
TI  - GLOBAL UNIQUENESS FOR THE CALDERÓN PROBLEM WITH LIPSCHITZ CONDUCTIVITIES
JO  - Forum of Mathematics, Pi
PY  - 2016
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.9/
DO  - 10.1017/fmp.2015.9
LA  - en
ID  - 10_1017_fmp_2015_9
ER  - 
%0 Journal Article
%A PEDRO CARO
%A KEITH M. ROGERS
%T GLOBAL UNIQUENESS FOR THE CALDERÓN PROBLEM WITH LIPSCHITZ CONDUCTIVITIES
%J Forum of Mathematics, Pi
%D 2016
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.9/
%R 10.1017/fmp.2015.9
%G en
%F 10_1017_fmp_2015_9
PEDRO CARO; KEITH M. ROGERS. GLOBAL UNIQUENESS FOR THE CALDERÓN PROBLEM WITH LIPSCHITZ CONDUCTIVITIES. Forum of Mathematics, Pi, Tome 4 (2016). doi: 10.1017/fmp.2015.9

[1] Alessandrini, G., ‘Singular solutions of elliptic equations and the determination of conductivity by boundary measurements’, J. Differential Equations 84 (1990), 252–272.Google Scholar

[2] Astala, K., Lassas, M. and Päivärinta, L., ‘The borderlines of invisibility and visibility for Calderon’s inverse problem’, Anal. PDE, to appear.Google Scholar

[3] Astala, K. and Päivärinta, L., ‘Calderón’s inverse conductivity problem in the plane’, Ann. of Math. (2) 163 (2006), 265–299.Google Scholar | DOI

[4] Brown, R. M., ‘Global uniqueness in the impedance-imaging problem for less regular conductivities’, SIAM J. Math. Anal. 27 (1996), 1049–1056.Google Scholar

[5] Brown, R. M., ‘Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result’, J. Inverse Ill-Posed Probl. 9 (2001), 567–574.Google Scholar

[6] Brown, R. M. and Torres, R. H., ‘Uniqueness in the inverse conductivity problem for conductivities with 3∕2 derivatives in L p , p > 2n ’, J. Fourier Anal. Appl. 9 (2003), 563–574.Google Scholar

[7] Calderón, A. P., ‘On an inverse boundary value problem’, Comput. Appl. Math. 25 (1980), 133–138.Google Scholar

[8] Caro, P., García, A. and Reyes, J. M., ‘Stability of the Calderón problem for less regular conductivities’, J. Differential Equations 254 (2013), 469–492.Google Scholar

[9] Dos Santos Ferreira, D., Kenig, C. E., Sjöstrand, J. and Uhlmann, G., ‘Determining a magnetic Schrödinger operator from partial Cauchy data’, Comm. Math. Phys. 271 (2007), 467–488.Google Scholar | DOI

[10] García, A. and Zhang, G., ‘Reconstruction from boundary measurements for less regular conductivities’, Preprint, 2012, arXiv:1212.0727.Google Scholar

[11] Greenleaf, A., Kurylev, Y., Lassas, M. and Uhlmann, G., ‘Invisibility and inverse problems’, Bull. Amer. Math. Soc. (N.S.) 46(1) (2009), 55–97.Google Scholar

[12] Greenleaf, A., Lassas, M. and Uhlmann, G., ‘The Calderón problem for conormal potentials. I. Global uniqueness and reconstruction’, Comm. Pure Appl. Math. 56(3) (2003), 328–352.Google Scholar | DOI

[13] Haberman, B., ‘Uniqueness in Calderón’s problem for conductivities with unbounded gradient’, Comm. Math. Phys. 340(2) (2015), 639–659.Google Scholar

[14] Haberman, B. and Tataru, D., ‘Uniqueness in Calderón’s problem with Lipschitz conductivities’, Duke Math. J. 162 (2013), 497–516.Google Scholar

[15] Jerison, D. and Kenig, C. E., ‘The inhomogeneous Dirichlet problem in Lipschitz domains’, J. Funct. Anal. 130 (1995), 161–219.Google Scholar

[16] Kenig, C. E., Sjöstrand, J. and Uhlmann, G., ‘The Calderón problem with partial data’, Ann. of Math. (2) 165(2) (2007), 567–591.Google Scholar

[17] Kohn, R. and Vogelius, M., ‘Determining conductivity by boundary measurements’, Comm. Pure Appl. Math. 37 (1984), 289–298.Google Scholar | DOI

[18] Krupchyk, K. and Uhlmann, G., ‘Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential’, Comm. Math. Phys. 327 (2014), 993–1009.Google Scholar

[19] Nachman, A., Sylvester, J. and Uhlmann, G., ‘An n-dimensional Borg–Levinson theorem’, Comm. Math. Phys. 115(4) (1988), 595–605.Google Scholar

[20] Päivärinta, L., Panchenko, A. and Uhlmann, G., ‘Complex geometrical optics solutions for Lipschitz conductivities’, Rev. Mat. Iberoam. 19(1) (2003), 57–72.Google Scholar

[21] Pliś, A., ‘On non-uniqueness in Cauchy problem for an elliptic second order differential equation’, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 11 (1963), 95–100.Google Scholar

[22] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (Princeton University Press, New Jersey, 1970).Google Scholar

[23] Sylvester, J. and Uhlmann, G., ‘A uniqueness theorem for an inverse boundary value problem in electrical prospection’, Comm. Pure Appl. Math. 39 (1986), 91–112.Google Scholar

[24] Sylvester, J. and Uhlmann, G., ‘A global uniqueness theorem for an inverse boundary value problem’, Ann. of Math. (2) 125 (1987), 153–169.Google Scholar | DOI

[25] Sylvester, J. and Uhlmann, G., ‘Inverse boundary value problems at the boundary-continuous dependence’, Comm. Pure Appl. Math. 41 (1988), 197–219.Google Scholar | DOI

[26] Tataru, D., ‘The X s spaces and unique continuation for solutions to the semilinear wave equation’, Comm. Partial Differential Equations 21 (1996), 841–887.Google Scholar

[27] Uhlmann, G., ‘Inverse boundary value problems for partial differential equations’, inProceedings of the International Congress of Mathematicians, Doc. Math., Vol. III (Berlin, 1998), 77–86.Google Scholar

[28] Wolff, T. H., ‘Recent work on sharp estimates in second-order elliptic unique continuation problems’, J. Geom. Anal. 3(6) (1993), 621–650.Google Scholar | DOI

Cité par Sources :