STARK POINTS AND $p$-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE
Forum of Mathematics, Pi, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $E$ be an elliptic curve over $\mathbb{Q}$, and let ${\it\varrho}_{\flat }$ and ${\it\varrho}_{\sharp }$ be odd two-dimensional Artin representations for which ${\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp }$ is self-dual. The progress on modularity achieved in recent decades ensures the existence of normalized eigenforms $f$, $g$, and $h$ of respective weights two, one, and one, giving rise to $E$, ${\it\varrho}_{\flat }$, and ${\it\varrho}_{\sharp }$ via the constructions of Eichler and Shimura, and of Deligne and Serre. This article examines certain $p$-adic iterated integrals attached to the triple $(f,g,h)$, which are $p$-adic avatars of the leading term of the Hasse–Weil–Artin $L$-series $L(E,{\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp },s)$ when it has a double zero at the centre. A formula is proposed for these iterated integrals, involving the formal group logarithms of global points on $E$—referred to as Starkpoints—which are defined over the number field cut out by ${\it\varrho}_{\flat }\otimes {\it\varrho}_{\sharp }$. This formula can be viewed as an elliptic curve analogue of Stark’s conjecture on units attached to weight-one forms. It is proved when $g$ and $h$ are binary theta series attached to a common imaginary quadratic field in which $p$ splits, by relating the arithmetic quantities that arise in it to elliptic units and Heegner points. Fast algorithms for computing $p$-adic iterated integrals based on Katz expansions of overconvergent modular forms are then exploited to gather numerical evidence in more exotic scenarios, encompassing Mordell–Weil groups over cyclotomic fields, ring class fields of real quadratic fields (a setting which may shed light on the theory of Stark–Heegner points attached to Shintani-type cycles on ${\mathcal{H}}_{p}\times {\mathcal{H}}$), and extensions of $\mathbb{Q}$ with Galois group a central extension of the dihedral group $D_{2n}$ or of one of the exceptional subgroups $A_{4}$, $S_{4}$, and $A_{5}$ of $\mathbf{PGL}_{2}(\mathbb{C})$.
@article{10_1017_fmp_2015_7,
     author = {HENRI DARMON and ALAN LAUDER and VICTOR ROTGER},
     title = {STARK {POINTS} {AND} $p${-ADIC} {ITERATED} {INTEGRALS} {ATTACHED} {TO} {MODULAR} {FORMS} {OF} {WEIGHT} {ONE}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fmp.2015.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.7/}
}
TY  - JOUR
AU  - HENRI DARMON
AU  - ALAN LAUDER
AU  - VICTOR ROTGER
TI  - STARK POINTS AND $p$-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE
JO  - Forum of Mathematics, Pi
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.7/
DO  - 10.1017/fmp.2015.7
LA  - en
ID  - 10_1017_fmp_2015_7
ER  - 
%0 Journal Article
%A HENRI DARMON
%A ALAN LAUDER
%A VICTOR ROTGER
%T STARK POINTS AND $p$-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE
%J Forum of Mathematics, Pi
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.7/
%R 10.1017/fmp.2015.7
%G en
%F 10_1017_fmp_2015_7
HENRI DARMON; ALAN LAUDER; VICTOR ROTGER. STARK POINTS AND $p$-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.7

[AL78] Atkin, A. O. L. and Li, W., ‘Twists of newforms and pseudo-eigenvalues of W-operators’, Invent. Math. 48(3) (1978), 221–243.Google Scholar

[BeDi] Bellaïche, J. and Dimitrov, M., ‘On the eigencurve at classical weight one points’, Duke Math. J. , to appear.Google Scholar

[BCDDPR] Bertolini, M., Castella, F., Darmon, H., Dasgupta, S., Prasanna, K. and Rotger, V., ‘p-adic L-functions and Euler systems: a tale in two trilogies’, inAutomorphic Forms and Galois Representations, Vol. 1, LMS Lecture Notes, 414 (Cambridge University Press, Cambridge, 2014), 52–102.Google Scholar

[BD1] Bertolini, M. and Darmon, H., ‘Kolyvagin’s descent and Mordell–Weil groups over ring class fields’, J. reine angew. Math. 412 (1990), 63–74.Google Scholar

[BD2] Bertolini, M. and Darmon, H., ‘Kato’s Euler system and rational points on elliptic curves I: A p-adic Beilinson formula’, Israel J. Math. 199 (2014), 163–188.Google Scholar

[BDP1] Bertolini, M., Darmon, H. and Prasanna, K., ‘p-adic Rankin L-series and rational points on CM elliptic curves’, Pacific J. Math. 260 (2012), 261–303.Google Scholar

[BDP2] Bertolini, M., Darmon, H. and Prasanna, K., ‘Generalised Heegner cycles and p-adic Rankin L-series’, Duke Math. J. 162(6) (2013), 1033–1148.Google Scholar

[BDR1] Bertolini, M., Darmon, H. and Rotger, V., ‘Beilinson–Flach elements and Euler Systems I: syntomic regulators and p-adic Rankin L-series’, J. Algebraic Geom. 24 (2015), 355–378.Google Scholar

[BDR2] Bertolini, M., Darmon, H. and Rotger, V., ‘Beilinson–Flach elements and Euler systems II: p-adic families and the Birch and Swinnerton-Dyer conjecture’, J. Algebraic Geom. 24 (2015), 569–604.Google Scholar

[Br] Brooks, E. H., ‘Generalized Heegner cycles, Shimura curves, and special values of -adic -functions’, PhD Dissertation, University of Michigan, 2013.Google Scholar

[Bu] Buzzard, K., ‘Computing weight one modular forms over ℂ and F̄ ’, inComputations with Modular Forms: Proceedings of a Summer School and Conference, Heidelberg, August/September 2011 (eds. (ed. Böckle, G. and Wiese, G.) (Springer, 2014), 129–146.Google Scholar

[Ch] Chinburg, T., ‘Stark’s conjecture for L-functions with first order zeroes at s = 0’, Adv. Math. 48 (1983), 82–113.Google Scholar

[CV] Cho, S. and Vatsal, V., ‘Deformations of induced Galois representations’, J. reine angew. Math. 556 (2003), 79–98.Google Scholar

[Co] Cowan, A., ‘Computational techniques for verifying the Birch and Swinnerton-Dyer conjecture for curves over cubic number fields’, NSERC USRA (Undergraduate Summer Research Award) project, available at http://www.math.mcgill.ca/darmon/theses/cowan.pdf.Google Scholar

[Dar] Darmon, H., ‘Integration on H×H and arithmetic applications’, Ann. of Math. (2) 154(3) (2001), 589–639.Google Scholar

[DDLR] Darmon, H., Daub, M., Lichtenstein, S. and Rotger, V., ‘Algorithms for Chow–Heegner points via iterated integrals’, Math. Comp. 84 (2015), 2505–2547. With an appendix by W. Stein.Google Scholar

[DLR1] Darmon, H., Lauder, A. and Rotger, V., ‘Gross–Stark units and p-adic iterated integrals attached to modular forms of weight one’, Ann. Math. Québec , to appear. Volume dedicated to Prof. Glenn Stevens on his 60th birthday.Google Scholar

[DLR2] Darmon, H., Lauder, A. and Rotger, V., ‘Overconvergent generalised eigenforms of weight one and class fields of real quadratic fields’, Adv. Math. 283 (2015), 130–142.Google Scholar

[DLR3] Darmon, H., Lauder, A. and Rotger, V., ‘Elliptic Stark conjectures and irregular weight one forms’, in progress.Google Scholar

[DP] Darmon, H. and Pollack, R., ‘The efficient calculation of Stark–Heegner points via overconvergent modular symbols’, Israel J. Math. 153 (2006), 319–354.Google Scholar

[DR1] Darmon, H. and Rotger, V., ‘Diagonal cycles and Euler systems I: a p-adic Gross–Zagier formula’, Ann. Sci. Éc. Norm. Supér. 47(4) , 47 p.Google Scholar

[DR2] Darmon, H. and Rotger, V., ‘Diagonal cycles and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse–Weil–Artin -series’, submitted.Google Scholar

[DR3] Darmon, H. and Rotger, V., ‘Elliptic curves of rank two and generalised Kato classes’, submitted.Google Scholar

[DRS] Darmon, H., Rotger, V. and Sols, I., ‘Iterated integrals, diagonal cycles, and rational points on elliptic curves’, Publ. Math. Besançon 2 (2012), 19–46.Google Scholar

[DFK] David, C., Fearnley, J. and Kisilevsky, H., ‘Vanishing of L-functions of elliptic curves over number fields’, inRanks of Elliptic Curves and Random Matrix Theory, London Mathematical Society Lecture Note Series, 341 (Cambridge University Press, Cambridge, 2007), 247–259.Google Scholar

[deS] De Shalit, E., Iwasawa Theory of Elliptic Curves with Complex Multiplication. p-Adic L-Functions, Perspectives in Mathematics, 3 (Academic Press, Inc., Boston, MA, 1987).Google Scholar

[DuLi] Duke, W. and Li, Y., ‘Harmonic Maass forms of weight one’, Duke Math. J. 164 (2015), 39–113.Google Scholar

[Gh] Ghate, E., ‘Ordinary forms and their local Galois representations’, available for download at http://www.math.tifr.res.in/ eghate/math.html.Google Scholar

[Gre] Greenberg, M., ‘Stark–Heegner points and the cohomology of quaternionic Shimura varieties’, Duke Math. J. 147(3) (2009), 541–575.Google Scholar

[Gro] Gross, B., ‘On the factorization of p-adic L-series’, Invent. Math. 57(1) (1980), 83–95.Google Scholar

[HaKu] Harris, M. and Kudla, S., ‘The central critical value of a triple product L-function’, Ann. Math. (2) 133 (1991), 605–672.Google Scholar

[Hi1] Hida, H., ‘Congruences of cusp forms and special values of their zeta functions’, Invent. Math. 63 (1981), 225–261.Google Scholar

[Hi2] Hida, H., ‘Elementary theory of L-functions and Eisenstein series’, Lond. Math. Soc. St. Texts 26 (1993).Google Scholar

[Hi3] Hida, H., ‘On the search of genuine p-adic modular L-functions for GL(n)’, inMémoires de la Société Mathématique de France, 2nd series, 67 (1996), 1–110.Google Scholar

[Ich] Ichino, A., ‘Trilinear forms and the central values of triple product L-functions’, Duke Math. J. 145(2) (2008), 281–307.Google Scholar

[Kato] Kato, K., ‘p-adic Hodge theory and values of zeta functions of modular forms’, inCohomologies p-Adiques et Applications Arithmétiques. III, Astérisque, No. 295 (2004), ix, 117–290.Google Scholar

[Katz1] Katz, N. M., ‘p-adic interpolation of real analytic Eisenstein series’, Ann. of Math. (2) 104(3) (1976), 459–571.Google Scholar

[Katz2] Katz, N. M., ‘p-adic L-functions for CM fields’, Invent. Math. 49 (1978), 199–297.Google Scholar

[KW] Khare, C. and Wintenberger, J.-P., ‘Serre’s modularity conjecture (I)’, Invent. Math. 178 (2009), 485–504.Google Scholar

[La1] Lauder, A., ‘Computations with classical and p-adic modular forms’, LMS J. Comput. Math. 14 (2011), 214–231.Google Scholar

[La2] Lauder, A., ‘Efficient computation of Rankin p-adic L-functions’, inComputations with Modular Forms: Proceedings of a Summer School and Conference, Heidelberg, August/September 2011 (eds. (ed. Böckle, G. and Wiese, G.) (Springer, 2014), 181–200.Google Scholar

[Pr] Prasad, D., ‘Trilinear forms for representations of GL(2) and local epsilon factors’, Compos. Math. 75 (1990), 1–46.Google Scholar

[Si] Silverman, J. H., ‘Computing rational points on rank 1 elliptic curves via L-series and canonical heights’, Math. Comp. 68(226) (1999), 835–858.Google Scholar

[St1] Stark, H. M., ‘L-functions at s = 1. II. Artin L-functions with rational characters’, Adv. Math. 17 (1975), 60–92.Google Scholar

[St2] Stark, H. M., ‘Class fields and modular forms of weight one’, inModular Functions of One Variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Mathematics, 601 (Springer, Berlin, 1977), 277–287.Google Scholar

[Wa] Watson, T. C., ‘Rankin triple products and quantum chaos’. PhD Thesis, Princeton University, 2002, 81 pp.Google Scholar

[Wo1] Woodbury, M., ‘Trilinear forms and subconvexity of the triple product -function’, submitted.Google Scholar

[Wo2] Woodbury, M., ‘On the triple product formula: real local calculations’, in preparation.Google Scholar

[YZZ] Yuan, X., Zhang, S. and Zhang, W., The Gross–Zagier Formula on Shimura Curves, Annals of Mathematics Studies, 184 (Princeton University Press, Princeton, NJ, 2013).Google Scholar

[Zh] Zhang, S.-W., ‘Gross–Zagier formula for GL (2). II’, inHeegner Points and Rankin L-Series, Mathematical Sciences Research Institute Publications, 49 (Cambridge University Press, Cambridge, 2004), 191–214.Google Scholar

Cité par Sources :