Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2015_6,
author = {JAN HENDRIK BRUINIER and MARTIN WESTERHOLT-RAUM},
title = {KUDLA{\textquoteright}S {MODULARITY} {CONJECTURE} {AND} {FORMAL} {FOURIER{\textendash}JACOBI} {SERIES}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fmp.2015.6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.6/}
}
TY - JOUR AU - JAN HENDRIK BRUINIER AU - MARTIN WESTERHOLT-RAUM TI - KUDLA’S MODULARITY CONJECTURE AND FORMAL FOURIER–JACOBI SERIES JO - Forum of Mathematics, Pi PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.6/ DO - 10.1017/fmp.2015.6 LA - en ID - 10_1017_fmp_2015_6 ER -
JAN HENDRIK BRUINIER; MARTIN WESTERHOLT-RAUM. KUDLA’S MODULARITY CONJECTURE AND FORMAL FOURIER–JACOBI SERIES. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.6
[1] , ‘Modular descent and the Saito–Kurokawa conjecture’, Invent. Math. 53(3) (1979), 267–280.Google Scholar
[2] , ‘Estimating Siegel modular forms of genus 2 using Jacobi forms’, J. Math. Kyoto Univ. 40(3) (2000), 581–588.Google Scholar
[3] , , and , ‘Smooth compactification of locally symmetric varieties’, in: Lie Groups: History, Frontiers and Applications, IV (Mathematical Science Press, Brookline, MA, 1975).Google Scholar
[4] , ‘The minimum value of quadratic forms, and the closest packing of spheres’, Math. Ann. 101(1) (1929), 605–608.Google Scholar
[5] , ‘The Gross–Kohnen–Zagier theorem in higher dimensions’, Duke Math. J. 97(2) (1999), 219–233.Google Scholar
[6] and , Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Mathematics Studies, 94 (Princeton University Press and University of Tokyo Press, Princeton, NJ and Tokyo, 1980).Google Scholar
[7] , ‘Hermitian modular functions’, Ann. of Math. (2) 50(2) (1949), 827–855.Google Scholar
[8] , ‘Vector valued formal Fourier–Jacobi series’, Proc. Amer. Math. Soc. 143(2) (2015), 505–512.Google Scholar
[9] , , and , The 1-2-3 of Modular Forms, Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004 (Universitext, Springer, Berlin, 2008).Google Scholar | DOI
[10] , ‘Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht’, Math. Ann. 213 (1975), 281–291. erratum; ibid. (1975), 195.Google Scholar
[11] and , The Theory of Jacobi Forms, Progress in Mathematics, 55 (Birkhäuser Boston Inc., Boston, MA, 1985).Google Scholar
[12] , , and , ‘Singularities of theta divisors and the geometry of A’, J. Eur. Math. Soc. (JEMS) 16(9) (2014), 1817–1848.Google Scholar
[13] and , Étale Cohomology and the Weil Conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 13 (Springer, Berlin, 1988), Translated from the German by B. S. Waterhouse and W. C. Waterhouse, with an historical introduction by J. A. Dieudonné.Google Scholar
[14] and , From Holomorphic Functions to Complex Manifolds, Graduate Texts in Mathematics, 213 (Springer, New York, 2002).Google Scholar
[15] and , ‘Komplexe Räume’, Math. Ann. 136 (1958), 245–318.Google Scholar
[16] , ‘Geometry of A and its compactifications’, in: Algebraic Geometry—Seattle 2005. Part 1, Proceedings of Symposia in Applied Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 193–234.Google Scholar
[17] , and , ‘Jacobi forms that characterize paramodular forms’, Abh. Math. Semin. Univ. Hambg. 83(1) (2013), 111–128.Google Scholar
[18] , and , ‘Characteristic twists of a Dirichlet series for Siegel cusp forms’, Manuscripta Math. 87(4) (1995), 489–499.Google Scholar
[19] and , ‘A certain Dirichlet series attached to Siegel modular forms of degree two’, Invent. Math. 95(3) (1989), 541–558.Google Scholar
[20] , Modular Forms on Half-Spaces of Quaternions, Lecture Notes in Mathematics, 1143 (Springer, Berlin, 1985).Google Scholar
[21] , ‘Algebraic cycles on Shimura varieties of orthogonal type’, Duke Math. J. 86(1) (1997), 39–78.Google Scholar
[22] , ‘Special cycles and derivatives of Eisenstein series’, in: Heegner Points and Rankin L-Series, Mathematical Sciences Research Institute Publications, 49 (Cambridge University Press, Cambridge, 2004), 243–270.Google Scholar
[23] and , ‘Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables’, Publ. Math. Inst. Hautes Études Sci. 71 (1990), 121–172.Google Scholar
[24] , ‘Über eine Spezialschar von Modulformen zweiten Grades’, Invent. Math. 52(1) (1979), 95–104.Google Scholar
[25] , ‘Über eine Spezialschar von Modulformen zweiten Grades II’, Invent. Math. 53(3) (1979), 249–253.Google Scholar
[26] , ‘Über eine Spezialschar von Modulformen zweiten Grades III’, Invent. Math. 53(3) (1979), 255–265.Google Scholar
[27] , Commutative Algebra, 2nd edn, Mathematics Lecture Note Series, 56 (Benjamin/Cummings Publishing Co., Reading, MA, 1980).Google Scholar
[28] , Toroidal Compactification of Siegel Spaces, Lecture Notes in Mathematics, 812 (Springer, Berlin, 1980).Google Scholar
[29] , ‘Formal Fourier Jacobi expansions and special cycles of codimension 2’, Compos. Math. (accepted), Preprint 2013, arXiv:1302.0880.Google Scholar
[30] , ‘Theta functions and Siegel–Jacobi forms’, Acta Math. 175(2) (1995), 165–196.Google Scholar
[31] , ‘Modular forms of the fourth degree’, in: Classification of Irregular Varieties (Trento, 1990), Lecture Notes in Mathematics, 1515 (Springer, Berlin, 1992), 106–111.Google Scholar
[32] , ‘The arithmetic of automorphic forms with respect to a unitary group’, Ann. of Math. (2) 107(3) (1978), 569–605.Google Scholar
[33] , ‘Die Modulgruppe in einer einfachen involutorischen Algebra’, in: Festschrift zur Feier des zweihundertjährigen Bestehens der Akademie der Wissenschaften in Göttingen, I. Math.-Phys. Kl. (Springer, Berlin, 1951), 157–167.Google Scholar
[34] , ‘Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula’, Preprint, 2014, arXiv:14064247.Google Scholar
[35] , Stacks Project, http://stacks.math.columbia.edu, 2014.Google Scholar
[36] , ‘Estimations on dimensions of spaces of Jacobi forms’, Sci. China A 42(2) (1999), 147–153.Google Scholar
[37] , and , ‘The Gross–Kohnen–Zagier theorem over totally real fields’, Compos. Math. 145(5) (2009), 1147–1162.Google Scholar
[38] , ‘Sur la conjecture de Saito–Kurokawa (d’après H Maass)’, in: Seminar on Number Theory, Paris 1979–80, Progress of Mathematics, 12 (Birkhäuser, Boston, 1981), 371–394.Google Scholar
[39] , ‘Modularity of generating functions of special cycles on shimura varieties’, PhD Thesis, Columbia University, 2009.Google Scholar
[40] , ‘Jacobi forms of higher degree’, Abh. Math. Semin. Univ. Hambg. 59 (1989), 191–224.Google Scholar
Cité par Sources :