Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2015_4,
     author = {RAF CLUCKERS and GEORGES COMTE and FRAN\c{C}OIS LOESER},
     title = {NON-ARCHIMEDEAN {YOMDIN{\textendash}GROMOV} {PARAMETRIZATIONS} {AND} {POINTS} {OF} {BOUNDED} {HEIGHT}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fmp.2015.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.4/}
}
                      
                      
                    TY - JOUR AU - RAF CLUCKERS AU - GEORGES COMTE AU - FRANÇOIS LOESER TI - NON-ARCHIMEDEAN YOMDIN–GROMOV PARAMETRIZATIONS AND POINTS OF BOUNDED HEIGHT JO - Forum of Mathematics, Pi PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.4/ DO - 10.1017/fmp.2015.4 LA - en ID - 10_1017_fmp_2015_4 ER -
%0 Journal Article %A RAF CLUCKERS %A GEORGES COMTE %A FRANÇOIS LOESER %T NON-ARCHIMEDEAN YOMDIN–GROMOV PARAMETRIZATIONS AND POINTS OF BOUNDED HEIGHT %J Forum of Mathematics, Pi %D 2015 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.4/ %R 10.1017/fmp.2015.4 %G en %F 10_1017_fmp_2015_4
RAF CLUCKERS; GEORGES COMTE; FRANÇOIS LOESER. NON-ARCHIMEDEAN YOMDIN–GROMOV PARAMETRIZATIONS AND POINTS OF BOUNDED HEIGHT. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.4
[1] , and , ‘Model theory of the Frobenius on the Witt vectors’, Amer. J. Math. 129 (2007), 665–721.Google Scholar | DOI
[2] and , ‘The number of integral points on arcs and ovals’, Duke Math. J. 59 (1989), 337–357.Google Scholar | DOI
[3] , ‘A note on a paper by R. Heath-Brown: ‘The density of rational points on curves and surfaces’’, J. Reine Angew. Math. 571 (2004), 159–178.Google Scholar
[4] , and , ‘Counting rational points on algebraic varieties’, Duke Math. J. 132 (2006), 545–578.Google Scholar | DOI
[5] , ‘A proof of Yomdin–Gromov’s algebraic lemma’, Israel J. Math. 168 (2008), 291–316.Google Scholar | DOI
[6] and , ‘Motivic height zeta functions’, Amer. J. Math., to appear. arXiv:1302.2077.Google Scholar
[7] , and , ‘Definable sets over finite fields’, J. Reine Angew. Math. 427 (1992), 107–135.Google Scholar
[8] and , ‘Concentration of points on curves in finite fields’, Monatsh. Math. 171 (2013), 315–327.Google Scholar | DOI
[9] , ‘Analytic p-adic cell decomposition and integrals’, Trans. Amer. Math. Soc. 356 (2004), 1489–1499.Google Scholar | DOI
[10] , and , ‘Lipschitz continuity properties for p-adic semialgebraic and subanalytic functions’, Geom. Funct. Anal. 20 (2010), 68–87.Google Scholar | DOI
[11] and , ‘Approximations and Lipschitz continuity in p-adic semialgebraic and subanalytic geometry’, Selecta Math. (N.S.) 18 (2012), 825–837.Google Scholar | DOI
[12] and , ‘Fields with analytic structure’, J. Eur. Math. Soc. 13 (2011), 1147–1223.Google Scholar | DOI
[13] and , ‘Strictly convergent analytic structures’, J. Eur. Math. Soc., to appear. arXiv:1312.5932.Google Scholar
[14] , and , ‘Analytic cell decomposition and analytic motivic integration’, Ann. Sci. Éc. Norm. Supér (4) 39 (2006), 535–568.Google Scholar | DOI
[15] and , ‘b-minimality’, J. Math. Log. 7 (2007), 195–227.Google Scholar | DOI
[16] , ‘The distribution of Galois groups and Hilbert’s irreducibility theorem’, Proc. Lond. Math. Soc. (3) 43 (1981), 227–250.Google Scholar | DOI
[17] , and , Ideals, Varieties, and Algorithms (Springer, New York, 1992).Google Scholar | DOI
[18] , ‘p-adic semialgebraic sets and cell decomposition’, J. Reine Angew. Math. 369 (1986), 154–166.Google Scholar
[19] and , ‘p-adic and real subanalytic sets’, Ann. of Math. (2) 128 (1988), 79–138.Google Scholar | DOI
[20] , Tame Topology and o-Minimal Structures, London Mathematical Society Lecture Notes Series, 248 (Cambridge University Press, Cambridge, 1998).Google Scholar | DOI
[21] , ‘Entropy, homology and semialgebraic geometry’, inSéminaire Bourbaki, Vol. 1985/1986, Astérisque, 145–146 (1987), 225–240.Google Scholar
[22] , ‘Non-archimedean Whitney stratifications’, Proc. Lond. Math. Soc. (3) 109 (2014), 1304–1362.Google Scholar | DOI
[23] , ‘The density of rational points on curves and surfaces’, Ann. of Math. (2) 155 (2002), 553–595.Google Scholar | DOI
[24] , ‘A large sieve inequality for rational function fields’, J. Number Theory 58 (1996), 267–287.Google Scholar | DOI
[25] , ‘On definable subsets of p-adic fields’, J. Symbolic Logic 41 (1976), 605–610.Google Scholar | DOI
[26] , ‘A generalization of the Bombieri–Pila determinant method’, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010); Issled. Teorii Chisel. , 63–77, 242; translation in J. Math. Sci. (N. Y.) (2010), 736–744.Google Scholar
[27] , ‘Cell decomposition for P-minimal fields’, Math. Logic Quart. 55 (2009), 487–492.Google Scholar | DOI
[28] , ‘Uniform p-adic cell decomposition and local zeta-functions’, J. Reine Angew. Math. 399 (1989), 137–172.Google Scholar
[29] , ‘Cell decomposition and local zeta functions in a tower of unramified extensions of a p-adic field’, Proc. Lond. Math. Soc. (3) 60(1) (1990), 37–67.Google Scholar | DOI
[30] , ‘Density of integral and rational points on varieties’, inColumbia University Number Theory Seminar (New York, 1992), Astérisque, 228 (1995), 183–187.Google Scholar
[31] , ‘Integer points on the dilation of a subanalytic surface’, Q. J. Math. 55 (2004), 207–223.Google Scholar
[32] , ‘The density of rational points on a Pfaff curve’, Ann. Fac. Sci. Toulouse Math. (6) 16(3) (2007), 635–645.Google Scholar | DOI
[33] , ‘On the algebraic points of a definable set’, Selecta Math. (N. S.) 15 (2009), 151–170.Google Scholar | DOI
[34] , ‘o-minimality and the André-Oort conjecture for ℂn’, Ann. of Math. (2) 173 (2011), 1779–1840.Google Scholar | DOI
[35] and , ‘The rational points of a definable set’, Duke Math. J. 133 (2006), 591–616.Google Scholar | DOI
[36] , ‘Some properties of analytic difference fields’, J. Inst. Math. Jussieu, to appear. arXiv:1401.1765.Google Scholar
[37] , ‘On the density of rational and integral points on algebraic varieties’, J. reine angew. Math. 606 (2007), 123–147.Google Scholar
[38] , ‘A proof of the André-Oort conjecture via mathematical logic’, inSéminaire Bourbaki, 2010–2011, Astérisque, 348 (2012).Google Scholar
[39] , ‘Counting special points: logic, diophantine geometry, and transcendence theory’, Bull. Amer. Math. Soc. (N. S.) 49 (2012), 51–71.Google Scholar | DOI
[40] , ‘o-minimality as an approach to the André-Oort conjecture, Panoramas et Synthèses’ (to appear).Google Scholar
[41] , Lectures on the Mordell-Weil Theorem, Aspects of Mathematics (Vieweg, Braunschweig, 1997).Google Scholar | DOI
[42] , ‘Volume growth and entropy’, Israel J. Math. 57 (1987), 285–300.Google Scholar | DOI
[43] , ‘Ck -resolution of semialgebraic mappings. Addendum to: ‘Volume growth and entropy’’, Israel J. Math. 57 (1987), 301–317.Google Scholar | DOI
[44] , ‘Some problems of unlikely intersections in arithmetic and geometry’, inAnnals of Mathematics Studies, Vol. 181 (Princeton University Press, Princeton, NJ, 2012): with appendixes by D. Masser.Google Scholar
Cité par Sources :