NON-ARCHIMEDEAN YOMDIN–GROMOV PARAMETRIZATIONS AND POINTS OF BOUNDED HEIGHT
Forum of Mathematics, Pi, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove an analog of the Yomdin–Gromov lemma for $p$-adic definable sets and more broadly in a non-Archimedean definable context. This analog keeps track of piecewise approximation by Taylor polynomials, a nontrivial aspect in the totally disconnected case. We apply this result to bound the number of rational points of bounded height on the transcendental part of $p$-adic subanalytic sets, and to bound the dimension of the set of complex polynomials of bounded degree lying on an algebraic variety defined over $\mathbb{C}(\!(t)\!)$, in analogy to results by Pila and Wilkie, and by Bombieri and Pila, respectively. Along the way we prove, for definable functions in a general context of non-Archimedean geometry, that local Lipschitz continuity implies piecewise global Lipschitz continuity.
@article{10_1017_fmp_2015_4,
     author = {RAF CLUCKERS and GEORGES COMTE and FRAN\c{C}OIS LOESER},
     title = {NON-ARCHIMEDEAN {YOMDIN{\textendash}GROMOV} {PARAMETRIZATIONS} {AND} {POINTS} {OF} {BOUNDED} {HEIGHT}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fmp.2015.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.4/}
}
TY  - JOUR
AU  - RAF CLUCKERS
AU  - GEORGES COMTE
AU  - FRANÇOIS LOESER
TI  - NON-ARCHIMEDEAN YOMDIN–GROMOV PARAMETRIZATIONS AND POINTS OF BOUNDED HEIGHT
JO  - Forum of Mathematics, Pi
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.4/
DO  - 10.1017/fmp.2015.4
LA  - en
ID  - 10_1017_fmp_2015_4
ER  - 
%0 Journal Article
%A RAF CLUCKERS
%A GEORGES COMTE
%A FRANÇOIS LOESER
%T NON-ARCHIMEDEAN YOMDIN–GROMOV PARAMETRIZATIONS AND POINTS OF BOUNDED HEIGHT
%J Forum of Mathematics, Pi
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.4/
%R 10.1017/fmp.2015.4
%G en
%F 10_1017_fmp_2015_4
RAF CLUCKERS; GEORGES COMTE; FRANÇOIS LOESER. NON-ARCHIMEDEAN YOMDIN–GROMOV PARAMETRIZATIONS AND POINTS OF BOUNDED HEIGHT. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.4

[1] Bélair, L., Macintyre, A. and Scanlon, T., ‘Model theory of the Frobenius on the Witt vectors’, Amer. J. Math. 129 (2007), 665–721.Google Scholar | DOI

[2] Bombieri, E. and Pila, J., ‘The number of integral points on arcs and ovals’, Duke Math. J. 59 (1989), 337–357.Google Scholar | DOI

[3] Broberg, N., ‘A note on a paper by R. Heath-Brown: ‘The density of rational points on curves and surfaces’’, J. Reine Angew. Math. 571 (2004), 159–178.Google Scholar

[4] Browning, T., Heath-Brown, D. and Salberger, P., ‘Counting rational points on algebraic varieties’, Duke Math. J. 132 (2006), 545–578.Google Scholar | DOI

[5] Burguet, D., ‘A proof of Yomdin–Gromov’s algebraic lemma’, Israel J. Math. 168 (2008), 291–316.Google Scholar | DOI

[6] Chambert-Loir, A. and Loeser, F., ‘Motivic height zeta functions’, Amer. J. Math., to appear. arXiv:1302.2077.Google Scholar

[7] Chatzidakis, Z., Van Den Dries, L. and Macintyre, A., ‘Definable sets over finite fields’, J. Reine Angew. Math. 427 (1992), 107–135.Google Scholar

[8] Cilleruelo, J. and Shparlinski, I., ‘Concentration of points on curves in finite fields’, Monatsh. Math. 171 (2013), 315–327.Google Scholar | DOI

[9] Cluckers, R., ‘Analytic p-adic cell decomposition and integrals’, Trans. Amer. Math. Soc. 356 (2004), 1489–1499.Google Scholar | DOI

[10] Cluckers, R., Comte, G. and Loeser, F., ‘Lipschitz continuity properties for p-adic semialgebraic and subanalytic functions’, Geom. Funct. Anal. 20 (2010), 68–87.Google Scholar | DOI

[11] Cluckers, R. and Halupczok, I., ‘Approximations and Lipschitz continuity in p-adic semialgebraic and subanalytic geometry’, Selecta Math. (N.S.) 18 (2012), 825–837.Google Scholar | DOI

[12] Cluckers, R. and Lipshitz, L., ‘Fields with analytic structure’, J. Eur. Math. Soc. 13 (2011), 1147–1223.Google Scholar | DOI

[13] Cluckers, R. and Lipshitz, L., ‘Strictly convergent analytic structures’, J. Eur. Math. Soc., to appear. arXiv:1312.5932.Google Scholar

[14] Cluckers, R., Lipshitz, L. and Robinson, Z., ‘Analytic cell decomposition and analytic motivic integration’, Ann. Sci. Éc. Norm. Supér (4) 39 (2006), 535–568.Google Scholar | DOI

[15] Cluckers, R. and Loeser, F., ‘b-minimality’, J. Math. Log. 7 (2007), 195–227.Google Scholar | DOI

[16] Cohen, S. D., ‘The distribution of Galois groups and Hilbert’s irreducibility theorem’, Proc. Lond. Math. Soc. (3) 43 (1981), 227–250.Google Scholar | DOI

[17] Cox, D., Little, J. and O’Shea, D., Ideals, Varieties, and Algorithms (Springer, New York, 1992).Google Scholar | DOI

[18] Denef, J., ‘p-adic semialgebraic sets and cell decomposition’, J. Reine Angew. Math. 369 (1986), 154–166.Google Scholar

[19] Denef, J. and Van Den Dries, L., ‘p-adic and real subanalytic sets’, Ann. of Math. (2) 128 (1988), 79–138.Google Scholar | DOI

[20] Van Den Dries, L., Tame Topology and o-Minimal Structures, London Mathematical Society Lecture Notes Series, 248 (Cambridge University Press, Cambridge, 1998).Google Scholar | DOI

[21] Gromov, M., ‘Entropy, homology and semialgebraic geometry’, inSéminaire Bourbaki, Vol. 1985/1986, Astérisque, 145–146 (1987), 225–240.Google Scholar

[22] Halupczok, I., ‘Non-archimedean Whitney stratifications’, Proc. Lond. Math. Soc. (3) 109 (2014), 1304–1362.Google Scholar | DOI

[23] Heath-Brown, D., ‘The density of rational points on curves and surfaces’, Ann. of Math. (2) 155 (2002), 553–595.Google Scholar | DOI

[24] Hsu, C., ‘A large sieve inequality for rational function fields’, J. Number Theory 58 (1996), 267–287.Google Scholar | DOI

[25] Macintyre, A., ‘On definable subsets of p-adic fields’, J. Symbolic Logic 41 (1976), 605–610.Google Scholar | DOI

[26] Marmon, O., ‘A generalization of the Bombieri–Pila determinant method’, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010); Issled. Teorii Chisel. , 63–77, 242; translation in J. Math. Sci. (N. Y.) (2010), 736–744.Google Scholar

[27] Mourgues, M.-H., ‘Cell decomposition for P-minimal fields’, Math. Logic Quart. 55 (2009), 487–492.Google Scholar | DOI

[28] Pas, J., ‘Uniform p-adic cell decomposition and local zeta-functions’, J. Reine Angew. Math. 399 (1989), 137–172.Google Scholar

[29] Pas, J., ‘Cell decomposition and local zeta functions in a tower of unramified extensions of a p-adic field’, Proc. Lond. Math. Soc. (3) 60(1) (1990), 37–67.Google Scholar | DOI

[30] Pila, J., ‘Density of integral and rational points on varieties’, inColumbia University Number Theory Seminar (New York, 1992), Astérisque, 228 (1995), 183–187.Google Scholar

[31] Pila, J., ‘Integer points on the dilation of a subanalytic surface’, Q. J. Math. 55 (2004), 207–223.Google Scholar

[32] Pila, J., ‘The density of rational points on a Pfaff curve’, Ann. Fac. Sci. Toulouse Math. (6) 16(3) (2007), 635–645.Google Scholar | DOI

[33] Pila, J., ‘On the algebraic points of a definable set’, Selecta Math. (N. S.) 15 (2009), 151–170.Google Scholar | DOI

[34] Pila, J., ‘o-minimality and the André-Oort conjecture for ℂn’, Ann. of Math. (2) 173 (2011), 1779–1840.Google Scholar | DOI

[35] Pila, J. and Wilkie, A., ‘The rational points of a definable set’, Duke Math. J. 133 (2006), 591–616.Google Scholar | DOI

[36] Rideau, S., ‘Some properties of analytic difference fields’, J. Inst. Math. Jussieu, to appear. arXiv:1401.1765.Google Scholar

[37] Salberger, P., ‘On the density of rational and integral points on algebraic varieties’, J. reine angew. Math. 606 (2007), 123–147.Google Scholar

[38] Scanlon, T., ‘A proof of the André-Oort conjecture via mathematical logic’, inSéminaire Bourbaki, 2010–2011, Astérisque, 348 (2012).Google Scholar

[39] Scanlon, T., ‘Counting special points: logic, diophantine geometry, and transcendence theory’, Bull. Amer. Math. Soc. (N. S.) 49 (2012), 51–71.Google Scholar | DOI

[40] Scanlon, T., ‘o-minimality as an approach to the André-Oort conjecture, Panoramas et Synthèses’ (to appear).Google Scholar

[41] Serre, J.-P., Lectures on the Mordell-Weil Theorem, Aspects of Mathematics (Vieweg, Braunschweig, 1997).Google Scholar | DOI

[42] Yomdin, Y., ‘Volume growth and entropy’, Israel J. Math. 57 (1987), 285–300.Google Scholar | DOI

[43] Yomdin, Y., ‘Ck -resolution of semialgebraic mappings. Addendum to: ‘Volume growth and entropy’’, Israel J. Math. 57 (1987), 301–317.Google Scholar | DOI

[44] Zannier, U., ‘Some problems of unlikely intersections in arithmetic and geometry’, inAnnals of Mathematics Studies, Vol. 181 (Princeton University Press, Princeton, NJ, 2012): with appendixes by D. Masser.Google Scholar

Cité par Sources :