SIMPLE GROUPS STABILIZING POLYNOMIALS
Forum of Mathematics, Pi, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the problem of determining, for a polynomial function $f$ on a vector space $V$, the linear transformations $g$ of $V$ such that $f\circ g=f$. When $f$ is invariant under a simple algebraic group $G$ acting irreducibly on $V$, we note that the subgroup of $\text{GL}(V)$ stabilizing $f$ often has identity component $G$, and we give applications realizing various groups, including the largest exceptional group $E_{8}$, as automorphism groups of polynomials and algebras. We show that, starting with a simple group $G$ and an irreducible representation $V$, one can almost always find an $f$ whose stabilizer has identity component $G$, and that no such $f$ exists in the short list of excluded cases. This relies on our core technical result, the enumeration of inclusions $G$ such that $V/H$ has the same dimension as $V/G$. The main results of this paper are new even in the special case where $k$ is the complex numbers.
@article{10_1017_fmp_2015_3,
     author = {SKIP GARIBALDI and ROBERT M. GURALNICK},
     title = {SIMPLE {GROUPS} {STABILIZING} {POLYNOMIALS}},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fmp.2015.3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.3/}
}
TY  - JOUR
AU  - SKIP GARIBALDI
AU  - ROBERT M. GURALNICK
TI  - SIMPLE GROUPS STABILIZING POLYNOMIALS
JO  - Forum of Mathematics, Pi
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.3/
DO  - 10.1017/fmp.2015.3
LA  - en
ID  - 10_1017_fmp_2015_3
ER  - 
%0 Journal Article
%A SKIP GARIBALDI
%A ROBERT M. GURALNICK
%T SIMPLE GROUPS STABILIZING POLYNOMIALS
%J Forum of Mathematics, Pi
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.3/
%R 10.1017/fmp.2015.3
%G en
%F 10_1017_fmp_2015_3
SKIP GARIBALDI; ROBERT M. GURALNICK. SIMPLE GROUPS STABILIZING POLYNOMIALS. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.3

[AnVE] Andreev, E. M., Vinberg, E. B. and Elashvili, A. G., ‘Orbits of greatest dimension in semi-simple linear Lie groups’, Funct. Anal. Appl. 1 (1968), 257–261.Google Scholar | DOI

[AzBS] Azad, H., Barry, M. and Seitz, G., ‘On the structure of parabolic subgroups’, Comm. Algebra 18(2) (1990), 551–562.Google Scholar

[BaMR] Bate, M., Martin, B. and Röhrle, G., ‘A geometric approach to complete reducibility’, Invent. Math. 161(1) (2005), 177–218.Google Scholar

[BeGL] Bermudez, H., Garibaldi, S. and Larsen, V., ‘Linear preservers and representations with a 1-dimensional ring of invariants’, Trans. Amer. Math. Soc. 366 (2014), 4755–4780. doi:.Google Scholar | DOI

[BeR] Bermudez, H. and Ruozzi, A., ‘Classifying simple groups via their invariant polynomials’, J. Algebra 424 (2015), 448–463. doi:.Google Scholar | DOI

[BlZ] Block, R. E. and Zassenhaus, H., ‘The Lie algebras with a nondegenerate trace form’, Illinois J. Math. 8 (1964), 543–549.Google Scholar | DOI

[BorT 65] Borel, A. and Tits, J., ‘Groupes réductifs’, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55–150.Google Scholar | DOI

[BorT 72] Borel, A. and Tits, J., ‘Compléments à l’article: Groupes réductifs’, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 253–276.Google Scholar

[BorT 73] Borel, A. and Tits, J., ‘Homomorphismes “abstraits” de groupes algébriques simples’, Ann. of Math. (2) 97 (1973), 499–571.Google Scholar | DOI

[BoG] Borthwick, D. and Garibaldi, S., ‘Did a 1-dimensional magnet detect a 248-dimensional algebra?’, Notices Amer. Math. Soc. 58(8) (2011), 1055–1066.Google Scholar

[Bou] Bourbaki, N., Lie Groups and Lie Algebras (Springer, Berlin, 2005).Google Scholar

[Ca 1894] Cartan, E., ‘Sur la structure des groupes de transformations finis et continus’, Thesis, Paris (1894); 2nd edn, Vuibert, 1933 ( Oe, part 1, vol 1 (1952), 137–287).Google Scholar

[Ca 1914] Cartan, E., ‘Les groupes réels simples et continus’, Ann. É. Norm. Supér. 31 (1914), 263–355.Google Scholar | DOI

[CeP] Cederwall, M. and Palmkvist, J., ‘The octic E invariant’, J. Math. Phys. (2007), 073505.Google Scholar | DOI

[Chen] Chen, Z. J., ‘A new prehomogeneous vector space of characteristic p’, Chin. Ann. Math. Ser. B 8(1) (1987), 22–35.Google Scholar

[ChS] Chevalley, C. and Schafer, R. D., ‘The exceptional simple Lie algebras F and E ’, Proc. Natl Acad. Sci. USA 36 (1950), 137–141.Google ScholarPubMed | DOI

[CohW] Cohen, A. M. and Wales, D. B., ‘GL (4)-orbits in a 16-dimensional module for characteristic 3’, J. Algebra 185 (1996), 85–107.Google Scholar | DOI

[Coldea+] Coldea, R., Tennant, D. A., Wheeler, E. M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smibidl, P. and Kiefer, K., ‘Quantum criticality in an Ising chain: experimental evidence for emergent E symmetry’, Science 327 (2010), 177–180.Google Scholar

[ConGP] Conrad, B., Gabber, O. and Prasad, G., Pseudo-Reductive Groups (Cambridge University Press, Cambridge, 2010).Google Scholar | DOI

[De 73] Demazure, M., ‘Invariants symétriques entiers des groupes de Weyl et torsion’, Invent. Math. 21 (1973), 287–301.Google Scholar | DOI

[De 77] Demazure, M., ‘Automorphismes et déformations des variétés de Borel’, Invent. Math. 39(2) (1977), 179–186.Google Scholar | DOI

[SGA3] Demazure, M. and Grothendieck, A., Schémas en groupes, (Société Mathématique de France, 2011), re-edition edited by P. Gille and P. Polo.Google Scholar

[Dieu] Dieudonné, J. A., ‘Sur une généralisation du groupe orthogonal à quatre variables’, Arch. Math. 1 (1949), 282–287.Google Scholar

[Dix] Dixmier, J., ‘Champs de vecteurs adjoints sur les groupes et algèbres de Lie semisimples’, J. reine angew. Math. 309 (1979), 183–190.Google Scholar

[EGA4] Grothendieck, A., ‘Éléments de géométrie algébrique IV. Etude locale des schémas et des morphismes de schémas, Troisième partie’, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5–255.Google Scholar

[Engel] Engel, F., ‘Ein neues, dem linearen Komplexe analoges Gebilde’, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Math.-Phys. Kl. 52 (1900), 63–76. 220–239.Google Scholar

[Fre] Freudenthal, H., ‘Sur le groupe exceptionnel E ’, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indagationes Math. 15 (1953), 81–89.Google Scholar | DOI

[Frob] Frobenius, G., ‘Über die Darstellung der endlichen Gruppen durch lineare Substitutionen’, Sitzungsberichte Deutsch. Akad. Wiss. Berlin (1897), 994–1015.Google Scholar

[GaS] Garibaldi, S. and Saltman, D. J., ‘Quaternion algebras with the same subfields’, inQuadratic Forms, Linear Algebraic Groups, and Cohomology, Developments in Mathematics, 18 (Springer, New York, 2010), 225–238.Google Scholar | DOI

[GoGu] Goldstein, D. and Guralnick, R., ‘Alternating forms and self-adjoint operators’, J. Algebra 308(1) (2007), 330–349.Google Scholar

[GorP] Gordeev, N. L. and Popov, V. L., ‘Automorphism groups of finite dimensional simple algebras’, Ann. of Math. (2) 158(3) (2003), 1041–1065.Google Scholar | DOI

[GuLMS] Guralnick, R. M., Liebeck, M. W., Macpherson, D. and Seitz, G. M., ‘Modules for algebraic groups with finitely many orbits on subspaces’, J. Algebra 196 (1997), 211–250.Google Scholar

[He] Helenius, F., ‘Freudenthal triple systems by root system methods’, J. Algebra 357 (2012), 116–137.Google Scholar

[Hi] Hiss, G., ‘Die adjungierten Darstellungen der Chevalley–Gruppen’, Arch. Math. (Basel) 42 (1984), 408–416.Google Scholar

[Hof 98] Hoffmann, D. W., ‘On Elman and Lam’s filtration of the u-invariant’, J. reine angew. Math. 495 (1998), 175–186.Google Scholar

[Hof 99] Hoffmann, D. W., ‘Pythagoras numbers of fields’, J. Amer. Math. Soc. 12(3) (1999), 839–848.Google Scholar

[Hof 00] Hoffmann, D. W., ‘Isotropy of quadratic forms and field invariants’, inQuadratic Forms and their Applications (Dublin, 1999), Contemporary Mathematics, 272 (American Mathematical Society, Providence, RI, 2000), 73–102.Google Scholar | DOI

[Hog] Hogeweij, G. M. D., ‘Almost-classical Lie algebras. I, II’, Nederl. Akad. Wetensch. Indag. Math. 44(4) (1982), 441–460.Google Scholar | DOI

[Ig] Igusa, J.-I., ‘A classification of spinors up to dimension twelve’, Amer. J. Math. 92 (1970), 997–1028.Google Scholar

[Iz] Izhboldin, O. T., ‘Fields of u-invariant 9’, Ann. of Math. (2) 154(3) (2001), 529–587.Google Scholar

[J] Jacobson, N., ‘Some groups of transformations defined by Jordan algebras I’, J. reine angew. Math. 201 (1959), 178–195. ( Coll. Math. Papers 63).Google Scholar

[Kac] Kac, V. G., ‘Some remarks on nilpotent orbits’, J. Algebra 64 (1980), 190–213.Google Scholar

[KacPV] Kac, V. G., Popov, V. L. and Vinberg, E. B., ‘Sur les groupes linéaires algébriques dont l’algèbre des invariants est libre’, C. R. Acad. Sci. Paris A–B 283(12) (1976), A875–A878.Google Scholar

[KacW] Kac, V. and Weisfeiler, B., ‘Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic p’, Nederl. Akad. Wetensch. Proc. Ser. A 79 = Indag. Math. 38(2) (1976), 136–151.Google Scholar

[KeM] Kemper, G. and Malle, G., ‘The finite irreducible linear groups with polynomial ring of invariants’, Transform. Groups 2(1) (1997), 57–89.Google Scholar

[Ken] Kenneally, D. J., ‘On eigenvectors for semisimple elements in actions of algebraic groups’, PhD Thesis, University of Cambridge, 2010.Google Scholar

[Ki] Killing, W., ‘Die Zusammensetzung der stetigen endlichen Transformationsgruppen. Zweiter Theil’, Math. Ann. 33 (1889), 1–48.Google Scholar | DOI

[KMRT] Knus, M.-A., Merkurjev, A. S., Rost, M. and Tignol, J.-P., The Book of Involutions, Colloquium Publications, 44 (American Mathematical Society, Providence, RI, 1998).Google Scholar

[Lem] Lemire, N., ‘Essential dimension of algebraic groups and integral representations of Weyl groups’, Transform. Groups 9(4) (2004), 337–379.Google Scholar | DOI

[Levy] Levy, P., ‘Vinberg’s 𝜃-groups in positive characteristic and Kostant–Weierstrass slices’, Transform. Groups 14(2) (2009), 417–461.Google Scholar

[Lie] Liebeck, M. W., ‘The affine permutation groups of rank three’, Proc. Lond. Math. Soc. (3) 54(3) (1987), 477–516.Google Scholar

[LieS] Liebeck, M. W. and Seitz, G. M., ‘The maximal subgroups of positive dimension in exceptional algebraic groups’, Mem. Amer. Math. Soc. 169(802) (2004), vi+227.Google Scholar

[Lüb01] Lübeck, F., ‘Small degree representations of finite Chevalley groups in defining characteristic’, LMS J. Comput. Math. 4 (2001), 135–169.Google Scholar

[Lurie] Lurie, J., ‘On simply laced Lie algebras and their minuscule representations’, Comment. Math. Helv. 76 (2001), 515–575.Google Scholar

[Luz] Luzgarev, A. Yu., ‘Fourth-degree invariants for G (E , R) not depending on the characteristic’, Vestnik St. Petersburg Univ. Math. 46(1) (2013), 29–34.Google Scholar

[Mar 03] Martin, B., ‘Reductive subgroups of reductive groups in nonzero characteristic’, J. Algebra 262(2) (2003), 265–286.Google Scholar

[Mar 13] Martin, B., ‘Conjugacy classes of maximal subgroups of a reductive algebraic group’, Preprint, 2013.Google Scholar

[MaV] Matzri, E. and Vishne, U., ‘Composition algebras and cyclic p-algebras in characteristic 3’, Manuscripta Math. 143 (2014), 1–18.Google Scholar

[Meh] Mehta, M. L., ‘Basic sets of invariant polynomials for finite reflection groups’, Comm. Algebra 16(5) (1988), 1083–1098.Google Scholar

[Mer] Merkurjev, A., ‘Simple algebras and quadratic forms’, Math. USSR Izv. 38(1) (1992), 215–221.Google Scholar

[Mey] Meyer, J. S., ‘A division algebra with infinite genus’, Bull. Lond. Math. Soc. 46(3) (2014), 463–468. doi:.Google Scholar | DOI

[MuS] Mulmuley, K. D. and Sohoni, M., ‘Geometric complexity theory I: an approach to the P vs. NP and related problems’, SIAM J. Comput. 31 (2001), 496–526.Google Scholar | DOI

[N] Nakajima, H., ‘Invariants of finite groups generated by pseudoreflections in positive characteristic’, Tsukuba J. Math. 3(1) (1979), 109–122.Google Scholar

[Po 80] Popov, V. L., ‘Classification of spinors of dimension 14’, Trans. Moscow Math. Soc. (1) (1980), 181–232.Google Scholar

[Po 92] Popov, V. L., Groups, Generators, Syzygies, and Orbits in Invariant Theory, Translations of Mathematical Monographs, 100 (American Mathematical Society, Providence, RI, 1992).Google Scholar

[PoV] Popov, V. L. and Vinberg, E. B., Invariant Theory, Encyclopedia of Mathematical Sciences, 55 (Springer, 1994), 123–284.Google Scholar

[Pr 86] Premet, A. A., ‘Inner ideals in modular Lie algebras’, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk (5) (1986), 11–15. 123.Google Scholar

[Pr 87] Premet, A. A., ‘Lie algebras without strong degeneration’, Math. USSR Sb. 57(1) (1987), 151–164.Google Scholar

[Re 10] Reichstein, Z., ‘Essential dimension’, inProceedings of the International Congress of Mathematicians, Vol. II (Hindustan Book Agency, New Delhi, 2010), 162–188.Google Scholar

[Re 12] Reichstein, Z., ‘What is …essential dimension?’, Not. AMS 59(10) (2012), 1432–1434.Google Scholar

[Ri 77] Richardson, R. W., ‘Affine coset spaces of reductive algebraic groups’, Bull. Lond. Math. Soc. 9(1) (1977), 38–41.Google Scholar

[Ri 88] Richardson, R. W., ‘Conjugacy classes of n-tuples in Lie algebras and algebraic groups’, Duke Math. J. 57 (1988), 1–35.Google Scholar

[Ro] Rosenlicht, M., ‘Some basic theorems on algebraic groups’, Amer. J. Math. 78 (1956), 401–443.Google Scholar

[Rub] Rubenthaler, H., ‘Non-parabolic prehomogeneous vector spaces and exceptional Lie algebras’, J. Algebra 281(1) (2004), 366–394.Google Scholar

[Rud] Rudakov, A. N., ‘Deformations of simple Lie algebras’, Math. USSR Izv. 5(5) (1971), 1120–1126.Google Scholar | DOI

[Sai] Saito, K., ‘On a linear structure of the quotient variety by a finite reflexion group’, Publ. RIMS 29 (1993), 535–579. text written in 1979.Google Scholar | DOI

[SaiYS] Saito, K., Yano, T. and Sekiguchi, J., ‘On a certain generator system of the ring of invariants of a finite reflection group’, Comm. Algebra 8(4) (1980), 373–408.Google Scholar | DOI

[SaK] Sato, M. and Kimura, T., ‘A classification of irreducible prehomogeneous vector spaces and their relative invariants’, Nagoya Math. J. 65 (1977), 1–155.Google Scholar | DOI

[Sc 78] Schwarz, G. W., ‘Representations of simple Lie groups with regular rings of invariants’, Invent. Math. 49(2) (1978), 167–191.Google Scholar | DOI

[Sc 08] Schwarz, G. W., ‘Linear maps preserving invariants’, Proc. Amer. Math. Soc. 136(12) (2008), 4197–4200.Google Scholar | DOI

[Sei] Seitz, G. M., ‘The maximal subgroups of classical algebraic groups’, Mem. Amer. Math. Soc. 67(365) (1987), iv+286.Google Scholar

[Ses] Seshadri, C. S., ‘Geometric reductivity over arbitrary base’, Adv. Math. 26 (1977), 225–274.Google Scholar | DOI

[Sk] Skryabin, S., ‘Invariants of finite group schemes’, J. Lond. Math. Soc. (2) 65(2) (2002), 339–360.Google Scholar | DOI

[So] Solomon, S., ‘Irreducible linear group-subgroup pairs with the same invariants’, J. Lie Theory 15 (2005), 105–123.Google Scholar

[Sp] Springer, T. A., Linear Algebraic Groups, second edn, (Birkhäuser, Boston, MA, 1998).Google Scholar | DOI

[SpSt] Springer, T. A. and Steinberg, R., ‘Conjugacy classes’, inSeminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, 131 (Springer, Berlin, 1970), 167–266.Google Scholar | DOI

[St 61] Steinberg, R., ‘Automorphisms of classical Lie algebras’, Pacific J. Math. 11 (1961), 1119–1129. ( Collected Papers, pp. 101–111).Google Scholar | DOI

[St 63] Steinberg, R., ‘Representations of algebraic groups’, Nagoya Math. J. 22 (1963), 33–56. ( Collected Papers, pp. 149–172).Google Scholar

[Ta] Talamini, V., ‘Flat bases of invariant polynomials and P̂-matrices of E and E ’, J. Math. Phys. 51 (2010), 023520.Google Scholar

[Ti 71] Tits, J., ‘Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque’, J. reine angew. Math. 247 (1971), 196–220.Google Scholar

[Ti 74] Tits, J., Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, 386 (Springer, New York, 1974).Google Scholar

[V] Vinberg, E. B., ‘The Weyl group of a graded Lie algebra’, Math. USSR Izv. 10 (1976), 463–495.Google Scholar | DOI

Cité par Sources :