Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2015_3,
author = {SKIP GARIBALDI and ROBERT M. GURALNICK},
title = {SIMPLE {GROUPS} {STABILIZING} {POLYNOMIALS}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fmp.2015.3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.3/}
}
SKIP GARIBALDI; ROBERT M. GURALNICK. SIMPLE GROUPS STABILIZING POLYNOMIALS. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.3
[AnVE] , and , ‘Orbits of greatest dimension in semi-simple linear Lie groups’, Funct. Anal. Appl. 1 (1968), 257–261.Google Scholar | DOI
[AzBS] , and , ‘On the structure of parabolic subgroups’, Comm. Algebra 18(2) (1990), 551–562.Google Scholar
[BaMR] , and , ‘A geometric approach to complete reducibility’, Invent. Math. 161(1) (2005), 177–218.Google Scholar
[BeGL] , and , ‘Linear preservers and representations with a 1-dimensional ring of invariants’, Trans. Amer. Math. Soc. 366 (2014), 4755–4780. doi:.Google Scholar | DOI
[BeR] and , ‘Classifying simple groups via their invariant polynomials’, J. Algebra 424 (2015), 448–463. doi:.Google Scholar | DOI
[BlZ] and , ‘The Lie algebras with a nondegenerate trace form’, Illinois J. Math. 8 (1964), 543–549.Google Scholar | DOI
[BorT 65] and , ‘Groupes réductifs’, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55–150.Google Scholar | DOI
[BorT 72] and , ‘Compléments à l’article: Groupes réductifs’, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 253–276.Google Scholar
[BorT 73] and , ‘Homomorphismes “abstraits” de groupes algébriques simples’, Ann. of Math. (2) 97 (1973), 499–571.Google Scholar | DOI
[BoG] and , ‘Did a 1-dimensional magnet detect a 248-dimensional algebra?’, Notices Amer. Math. Soc. 58(8) (2011), 1055–1066.Google Scholar
[Bou] , Lie Groups and Lie Algebras (Springer, Berlin, 2005).Google Scholar
[Ca 1894] , ‘Sur la structure des groupes de transformations finis et continus’, Thesis, Paris (1894); 2nd edn, Vuibert, 1933 ( Oe, part 1, vol 1 (1952), 137–287).Google Scholar
[Ca 1914] , ‘Les groupes réels simples et continus’, Ann. É. Norm. Supér. 31 (1914), 263–355.Google Scholar | DOI
[CeP] and , ‘The octic E invariant’, J. Math. Phys. (2007), 073505.Google Scholar | DOI
[Chen] , ‘A new prehomogeneous vector space of characteristic p’, Chin. Ann. Math. Ser. B 8(1) (1987), 22–35.Google Scholar
[ChS] and , ‘The exceptional simple Lie algebras F and E ’, Proc. Natl Acad. Sci. USA 36 (1950), 137–141.Google ScholarPubMed | DOI
[CohW] and , ‘GL (4)-orbits in a 16-dimensional module for characteristic 3’, J. Algebra 185 (1996), 85–107.Google Scholar | DOI
[Coldea+] , , , , , , , and , ‘Quantum criticality in an Ising chain: experimental evidence for emergent E symmetry’, Science 327 (2010), 177–180.Google Scholar
[ConGP] , and , Pseudo-Reductive Groups (Cambridge University Press, Cambridge, 2010).Google Scholar | DOI
[De 73] , ‘Invariants symétriques entiers des groupes de Weyl et torsion’, Invent. Math. 21 (1973), 287–301.Google Scholar | DOI
[De 77] , ‘Automorphismes et déformations des variétés de Borel’, Invent. Math. 39(2) (1977), 179–186.Google Scholar | DOI
[SGA3] and , Schémas en groupes, (Société Mathématique de France, 2011), re-edition edited by P. Gille and P. Polo.Google Scholar
[Dieu] , ‘Sur une généralisation du groupe orthogonal à quatre variables’, Arch. Math. 1 (1949), 282–287.Google Scholar
[Dix] , ‘Champs de vecteurs adjoints sur les groupes et algèbres de Lie semisimples’, J. reine angew. Math. 309 (1979), 183–190.Google Scholar
[EGA4] , ‘Éléments de géométrie algébrique IV. Etude locale des schémas et des morphismes de schémas, Troisième partie’, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5–255.Google Scholar
[Engel] , ‘Ein neues, dem linearen Komplexe analoges Gebilde’, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Math.-Phys. Kl. 52 (1900), 63–76. 220–239.Google Scholar
[Fre] , ‘Sur le groupe exceptionnel E ’, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indagationes Math. 15 (1953), 81–89.Google Scholar | DOI
[Frob] , ‘Über die Darstellung der endlichen Gruppen durch lineare Substitutionen’, Sitzungsberichte Deutsch. Akad. Wiss. Berlin (1897), 994–1015.Google Scholar
[GaS] and , ‘Quaternion algebras with the same subfields’, inQuadratic Forms, Linear Algebraic Groups, and Cohomology, Developments in Mathematics, 18 (Springer, New York, 2010), 225–238.Google Scholar | DOI
[GoGu] and , ‘Alternating forms and self-adjoint operators’, J. Algebra 308(1) (2007), 330–349.Google Scholar
[GorP] and , ‘Automorphism groups of finite dimensional simple algebras’, Ann. of Math. (2) 158(3) (2003), 1041–1065.Google Scholar | DOI
[GuLMS] , , and , ‘Modules for algebraic groups with finitely many orbits on subspaces’, J. Algebra 196 (1997), 211–250.Google Scholar
[He] , ‘Freudenthal triple systems by root system methods’, J. Algebra 357 (2012), 116–137.Google Scholar
[Hi] , ‘Die adjungierten Darstellungen der Chevalley–Gruppen’, Arch. Math. (Basel) 42 (1984), 408–416.Google Scholar
[Hof 98] , ‘On Elman and Lam’s filtration of the u-invariant’, J. reine angew. Math. 495 (1998), 175–186.Google Scholar
[Hof 99] , ‘Pythagoras numbers of fields’, J. Amer. Math. Soc. 12(3) (1999), 839–848.Google Scholar
[Hof 00] , ‘Isotropy of quadratic forms and field invariants’, inQuadratic Forms and their Applications (Dublin, 1999), Contemporary Mathematics, 272 (American Mathematical Society, Providence, RI, 2000), 73–102.Google Scholar | DOI
[Hog] , ‘Almost-classical Lie algebras. I, II’, Nederl. Akad. Wetensch. Indag. Math. 44(4) (1982), 441–460.Google Scholar | DOI
[Ig] , ‘A classification of spinors up to dimension twelve’, Amer. J. Math. 92 (1970), 997–1028.Google Scholar
[Iz] , ‘Fields of u-invariant 9’, Ann. of Math. (2) 154(3) (2001), 529–587.Google Scholar
[J] , ‘Some groups of transformations defined by Jordan algebras I’, J. reine angew. Math. 201 (1959), 178–195. ( Coll. Math. Papers 63).Google Scholar
[Kac] , ‘Some remarks on nilpotent orbits’, J. Algebra 64 (1980), 190–213.Google Scholar
[KacPV] , and , ‘Sur les groupes linéaires algébriques dont l’algèbre des invariants est libre’, C. R. Acad. Sci. Paris A–B 283(12) (1976), A875–A878.Google Scholar
[KacW] and , ‘Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic p’, Nederl. Akad. Wetensch. Proc. Ser. A 79 = Indag. Math. 38(2) (1976), 136–151.Google Scholar
[KeM] and , ‘The finite irreducible linear groups with polynomial ring of invariants’, Transform. Groups 2(1) (1997), 57–89.Google Scholar
[Ken] , ‘On eigenvectors for semisimple elements in actions of algebraic groups’, PhD Thesis, University of Cambridge, 2010.Google Scholar
[Ki] , ‘Die Zusammensetzung der stetigen endlichen Transformationsgruppen. Zweiter Theil’, Math. Ann. 33 (1889), 1–48.Google Scholar | DOI
[KMRT] , , and , The Book of Involutions, Colloquium Publications, 44 (American Mathematical Society, Providence, RI, 1998).Google Scholar
[Lem] , ‘Essential dimension of algebraic groups and integral representations of Weyl groups’, Transform. Groups 9(4) (2004), 337–379.Google Scholar | DOI
[Levy] , ‘Vinberg’s 𝜃-groups in positive characteristic and Kostant–Weierstrass slices’, Transform. Groups 14(2) (2009), 417–461.Google Scholar
[Lie] , ‘The affine permutation groups of rank three’, Proc. Lond. Math. Soc. (3) 54(3) (1987), 477–516.Google Scholar
[LieS] and , ‘The maximal subgroups of positive dimension in exceptional algebraic groups’, Mem. Amer. Math. Soc. 169(802) (2004), vi+227.Google Scholar
[Lüb01] , ‘Small degree representations of finite Chevalley groups in defining characteristic’, LMS J. Comput. Math. 4 (2001), 135–169.Google Scholar
[Lurie] , ‘On simply laced Lie algebras and their minuscule representations’, Comment. Math. Helv. 76 (2001), 515–575.Google Scholar
[Luz] , ‘Fourth-degree invariants for G (E , R) not depending on the characteristic’, Vestnik St. Petersburg Univ. Math. 46(1) (2013), 29–34.Google Scholar
[Mar 03] , ‘Reductive subgroups of reductive groups in nonzero characteristic’, J. Algebra 262(2) (2003), 265–286.Google Scholar
[Mar 13] , ‘Conjugacy classes of maximal subgroups of a reductive algebraic group’, Preprint, 2013.Google Scholar
[MaV] and , ‘Composition algebras and cyclic p-algebras in characteristic 3’, Manuscripta Math. 143 (2014), 1–18.Google Scholar
[Meh] , ‘Basic sets of invariant polynomials for finite reflection groups’, Comm. Algebra 16(5) (1988), 1083–1098.Google Scholar
[Mer] , ‘Simple algebras and quadratic forms’, Math. USSR Izv. 38(1) (1992), 215–221.Google Scholar
[Mey] , ‘A division algebra with infinite genus’, Bull. Lond. Math. Soc. 46(3) (2014), 463–468. doi:.Google Scholar | DOI
[MuS] and , ‘Geometric complexity theory I: an approach to the P vs. NP and related problems’, SIAM J. Comput. 31 (2001), 496–526.Google Scholar | DOI
[N] , ‘Invariants of finite groups generated by pseudoreflections in positive characteristic’, Tsukuba J. Math. 3(1) (1979), 109–122.Google Scholar
[Po 80] , ‘Classification of spinors of dimension 14’, Trans. Moscow Math. Soc. (1) (1980), 181–232.Google Scholar
[Po 92] , Groups, Generators, Syzygies, and Orbits in Invariant Theory, Translations of Mathematical Monographs, 100 (American Mathematical Society, Providence, RI, 1992).Google Scholar
[PoV] and , Invariant Theory, Encyclopedia of Mathematical Sciences, 55 (Springer, 1994), 123–284.Google Scholar
[Pr 86] , ‘Inner ideals in modular Lie algebras’, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk (5) (1986), 11–15. 123.Google Scholar
[Pr 87] , ‘Lie algebras without strong degeneration’, Math. USSR Sb. 57(1) (1987), 151–164.Google Scholar
[Re 10] , ‘Essential dimension’, inProceedings of the International Congress of Mathematicians, Vol. II (Hindustan Book Agency, New Delhi, 2010), 162–188.Google Scholar
[Re 12] , ‘What is …essential dimension?’, Not. AMS 59(10) (2012), 1432–1434.Google Scholar
[Ri 77] , ‘Affine coset spaces of reductive algebraic groups’, Bull. Lond. Math. Soc. 9(1) (1977), 38–41.Google Scholar
[Ri 88] , ‘Conjugacy classes of n-tuples in Lie algebras and algebraic groups’, Duke Math. J. 57 (1988), 1–35.Google Scholar
[Ro] , ‘Some basic theorems on algebraic groups’, Amer. J. Math. 78 (1956), 401–443.Google Scholar
[Rub] , ‘Non-parabolic prehomogeneous vector spaces and exceptional Lie algebras’, J. Algebra 281(1) (2004), 366–394.Google Scholar
[Rud] , ‘Deformations of simple Lie algebras’, Math. USSR Izv. 5(5) (1971), 1120–1126.Google Scholar | DOI
[Sai] , ‘On a linear structure of the quotient variety by a finite reflexion group’, Publ. RIMS 29 (1993), 535–579. text written in 1979.Google Scholar | DOI
[SaiYS] , and , ‘On a certain generator system of the ring of invariants of a finite reflection group’, Comm. Algebra 8(4) (1980), 373–408.Google Scholar | DOI
[SaK] and , ‘A classification of irreducible prehomogeneous vector spaces and their relative invariants’, Nagoya Math. J. 65 (1977), 1–155.Google Scholar | DOI
[Sc 78] , ‘Representations of simple Lie groups with regular rings of invariants’, Invent. Math. 49(2) (1978), 167–191.Google Scholar | DOI
[Sc 08] , ‘Linear maps preserving invariants’, Proc. Amer. Math. Soc. 136(12) (2008), 4197–4200.Google Scholar | DOI
[Sei] , ‘The maximal subgroups of classical algebraic groups’, Mem. Amer. Math. Soc. 67(365) (1987), iv+286.Google Scholar
[Ses] , ‘Geometric reductivity over arbitrary base’, Adv. Math. 26 (1977), 225–274.Google Scholar | DOI
[Sk] , ‘Invariants of finite group schemes’, J. Lond. Math. Soc. (2) 65(2) (2002), 339–360.Google Scholar | DOI
[So] , ‘Irreducible linear group-subgroup pairs with the same invariants’, J. Lie Theory 15 (2005), 105–123.Google Scholar
[Sp] , Linear Algebraic Groups, second edn, (Birkhäuser, Boston, MA, 1998).Google Scholar | DOI
[SpSt] and , ‘Conjugacy classes’, inSeminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, 131 (Springer, Berlin, 1970), 167–266.Google Scholar | DOI
[St 61] , ‘Automorphisms of classical Lie algebras’, Pacific J. Math. 11 (1961), 1119–1129. ( Collected Papers, pp. 101–111).Google Scholar | DOI
[St 63] , ‘Representations of algebraic groups’, Nagoya Math. J. 22 (1963), 33–56. ( Collected Papers, pp. 149–172).Google Scholar
[Ta] , ‘Flat bases of invariant polynomials and P̂-matrices of E and E ’, J. Math. Phys. 51 (2010), 023520.Google Scholar
[Ti 71] , ‘Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque’, J. reine angew. Math. 247 (1971), 196–220.Google Scholar
[Ti 74] , Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, 386 (Springer, New York, 1974).Google Scholar
[V] , ‘The Weyl group of a graded Lie algebra’, Math. USSR Izv. 10 (1976), 463–495.Google Scholar | DOI
Cité par Sources :