Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2015_2,
author = {MASSIMILIANO GUBINELLI and PETER IMKELLER and NICOLAS PERKOWSKI},
title = {PARACONTROLLED {DISTRIBUTIONS} {AND} {SINGULAR} {PDES}},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fmp.2015.2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.2/}
}
TY - JOUR AU - MASSIMILIANO GUBINELLI AU - PETER IMKELLER AU - NICOLAS PERKOWSKI TI - PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES JO - Forum of Mathematics, Pi PY - 2015 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.2/ DO - 10.1017/fmp.2015.2 LA - en ID - 10_1017_fmp_2015_2 ER -
MASSIMILIANO GUBINELLI; PETER IMKELLER; NICOLAS PERKOWSKI. PARACONTROLLED DISTRIBUTIONS AND SINGULAR PDES. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.2
[BCD11] , and , Fourier Analysis and Nonlinear Partial Differential Equations (Springer, 2011).Google Scholar
[BGR05] , and , ‘The evolution of a random vortex filament’, Ann. Probab. 33(5) (2005), 1825–1855.Google Scholar
[Bon81] , ‘Calcul symbolique et propagation des singularites pour les équations aux dérivées partielles non linéaires’, Ann. Sci. Éc. Norm. Supér. (4) 14 (1981), 209–246.Google Scholar
[BGN13] , and , ‘Global evolution of random vortex filament equation’, Nonlinearity 26(9) (2013), 2499.Google Scholar
[CM94] and , Parabolic Anderson Problem and Intermittency (American Mathematical Society, 1994).Google Scholar | DOI
[CF09] and , ‘Partial differential equations driven by rough paths’, J. Differential Equations 247(1) (2009), 140–173.Google Scholar
[CFO11] , and , ‘A (rough) pathwise approach to a class of non-linear stochastic partial differential equations’, Ann. Inst. H. Poincaré Anal. Non Linéaire 28(1) (2011), 27–46.Google Scholar
[CC13] and , ‘Paracontrolled distributions and the 3-dimensional stochastic quantization equation’. Preprint, 2013, arXiv:1310.6869.Google Scholar
[CG06] and , ‘On the global wellposedness of the 3-D Navier–Stokes equations with large initial data’, Ann. Sci. Éc. Norm. Supér. (4) 39(4) (2006), 679–698.Google Scholar
[CGP15] , and , ‘An invariance principle for the two-dimensional parabolic Anderson model with small potential’ (2015), in preparation.Google Scholar
[CG14] and , ‘Rough sheets’, Preprint, 2014, arXiv:1406.7748.Google Scholar
[DGT12] , and , ‘Non-linear rough heat equations’, Probab. Theory Related Fields 153(1–2) (2012), 97–147.Google Scholar
[DF12] and , ‘Backward stochastic differential equations with rough drivers’, Ann. Probab. 40(4) (2012), 1715–1758.Google Scholar | DOI
[FGGR12] , , and , ‘Spatial rough path lifts of stochastic convolutions’, Preprint, 2012, arXiv:1211.0046.Google Scholar
[FO11] and , ‘On the splitting-up method for rough (partial) differential equations’, J. Differential Equations 251(2) (2011), 316–338.Google Scholar
[FV10] and , Multidimensional Stochastic Processes as Rough Paths. Theory and Applications (Cambridge University Press, 2010).Google Scholar | DOI
[GIP14] , and , ‘A Fourier approach to pathwise stochastic integration’, Preprint, 2014, arXiv:1410.4006.Google Scholar
[GLT06] , and , ‘Young integrals and SPDEs’, Potential Anal. 25(4) (2006), 307–326.Google Scholar
[GP15] and , ‘KPZ reloaded’ (2015), in preparation.Google Scholar
[GP15a] and , ‘Lectures on singular stochastic PDEs’, Preprint, 2015, arXiv:1502.00157.Google Scholar
[Gub04] , ‘Controlling rough paths’, J. Funct. Anal. 216(1) (2004), 86–140.Google Scholar
[Gub12] , ‘Rough solutions for the periodic Korteweg–de Vries equation’, Commun. Pure Appl. Anal. 11(2) (2012), 709–733.Google Scholar
[Hai11] , ‘Rough stochastic PDEs’, Commun. Pure Appl. Math. 64(11) (2011), 1547–1585.Google Scholar
[Hai13] , ‘Solving the KPZ equation’, Ann. of Math. (2) 178(2) (2013), 559–664.Google Scholar | DOI
[Hai14] , ‘A theory of regularity structures’, Invent. Math. 198(2) (2014), 269–504.Google Scholar | DOI
[HMW14] , and , ‘Approximating rough stochastic PDEs’, Commun. Pure Appl. Math. 67(5) (2014), 776–870.Google Scholar
[HW13] and , ‘Rough Burgers-like equations with multiplicative noise’, Probab. Theory Related Fields 155(1–2) (2013), 71–126.Google Scholar
[Hu2002] , ‘Chaos expansion of heat equations with white noise potentials’, Potential Anal. 16(1) (2002), 45–66.Google Scholar
[Jan97] , Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics 129 (Cambridge University Press, Cambridge, 1997).Google Scholar
[KPZ86] , and , ‘Dynamic scaling of growing interfaces’, Phys. Rev. Lett. 56(9) (1986), 889–892.Google Scholar
[Kön15] , ‘The parabolic Anderson model’. Available at http://www.wias-berlin.de/people/koenig/www/PAMsurveyBook.pdf (2015), in preparation.Google Scholar
[Lyo98] , ‘Differential equations driven by rough signals’, Rev. Mat. Iberoam. 14(2) (1998), 215–310.Google Scholar
[LCL07] , and , Differential Equations Driven by Rough Paths, Lecture Notes in Mathematics 1908 (Springer, Berlin, 2007).Google Scholar
[LQ02] and , System Control and Rough Paths (Oxford University Press, 2002).Google Scholar
[NT11] and , ‘A construction of the rough path above fractional Brownian motion using Volterra’s representation’, Ann. Probab. 39(3) (2011), 1061–1096.Google Scholar
[Per14] , ‘Studies of Robustness in Stochastic Analysis and Mathematical Finance’, PhD Thesis, Humboldt-Universität zu Berlin, 2014.Google Scholar
[ST87] and , Topics in Fourier Analysis and Function Spaces, Vol. 42 (Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987).Google Scholar
[Tei11] , ‘Another approach to some rough and stochastic partial differential equations’, Stoch. Dyn. 11(2–3) (2011), 535–550.Google Scholar
[Tri06] , Theory of Function Spaces III, Monographs in Mathematics 100 (Birkhäuser Verlag, Basel, 2006).Google Scholar
[Unt10a] , ‘A rough path over multidimensional fractional Brownian motion with arbitrary Hurst index by Fourier normal ordering’, Stochastic Process. Appl. 120(8) (2010), 1444–1472.Google Scholar
[Unt10b] , ‘Hölder—continuous rough paths by fourier normal ordering’, Commun. Math. Phys. 298(1) (2010), 1–36.Google Scholar
Cité par Sources :