THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Forum of Mathematics, Pi, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Taylor–Wiles hypothesis) the weight part of Serre’s conjecture for $\text{GL}(2)$ over arbitrary totally real fields.
@article{10_1017_fmp_2015_1,
     author = {TOBY GEE and TONG LIU and DAVID SAVITT},
     title = {THE {WEIGHT} {PART} {OF} {SERRE{\textquoteright}S} {CONJECTURE} {FOR} $\text{GL}(2)$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fmp.2015.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.1/}
}
TY  - JOUR
AU  - TOBY GEE
AU  - TONG LIU
AU  - DAVID SAVITT
TI  - THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
JO  - Forum of Mathematics, Pi
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.1/
DO  - 10.1017/fmp.2015.1
LA  - en
ID  - 10_1017_fmp_2015_1
ER  - 
%0 Journal Article
%A TOBY GEE
%A TONG LIU
%A DAVID SAVITT
%T THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
%J Forum of Mathematics, Pi
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.1/
%R 10.1017/fmp.2015.1
%G en
%F 10_1017_fmp_2015_1
TOBY GEE; TONG LIU; DAVID SAVITT. THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.1

[BDJ10] Buzzard, K., Diamond, F. and Jarvis, F., ‘On Serre’s conjecture for mod l Galois representations over totally real fields’, Duke Math. J. 155(1) (2010), 105–161.Google Scholar | DOI

[BLGG13] Barnet-Lamb, T., Gee, T. and Geraghty, D., ‘Serre weights for rank two unitary groups’, Math. Ann. 356(4) (2013), 1551–1598.Google Scholar

[BLGGT14] Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., ‘Potential automorphy and change of weight’, Ann. of Math. (2) 179(2) (2014), 501–609.Google Scholar | DOI

[Bre97] Breuil, C., ‘Représentations p-adiques semi-stables et transversalité de Griffiths’, Math. Ann. 307(2) (1997), 191–224.Google Scholar | DOI

[Bre14] Breuil, C., ‘Sur un problème de compatibilité local-global modulo p pour GL’, J. Reine Angew. Math. 92 (2014), 1–76.Google Scholar | DOI

[BM02] Breuil, C. and Mézard, A., ‘Multiplicités modulaires et représentations de GL() et de Gal(ℚ∕ℚ) en l = p’, Duke Math. J. 115(2) (2002), 205–310. With an appendix by G. Henniart.Google Scholar

[BM12] Breuil, C. and Mézard, A., ‘Mulitplicités modulaires raffinées’, Bull. Soc. Math. France 142 (2012), 127–175.Google Scholar

[BP12] Breuil, C. and Paškūnas, V., ‘Towards a modulo p Langlands correspondence for GL’, Mem. Amer. Math. Soc. 216(1016) (2012), vi+114.Google Scholar

[Con11] Conrad, B., ‘Lifting global representations with local properties’, Preprint, 2011.Google Scholar

[CV92] Coleman, R. F. and Voloch, J. F., ‘Companion forms and Kodaira–Spencer theory’, Invent. Math. 110(2) (1992), 263–281.Google Scholar

[DS] Diamond, F. and Savitt, D., ‘Serre weights for locally reducible two-dimensional Galois representations’, J. Inst. Math. Jussieu, to appear.Google Scholar

[Edi92] Edixhoven, B., ‘The weight in Serre’s conjectures on modular forms’, Invent. Math. 109(3) (1992), 563–594.Google Scholar | DOI

[EGS] Emerton, M., Gee, T. and Savitt, D., ‘Lattices in the cohomology of Shimura curves’, Invent. Math., to appear.Google Scholar

[Fon94] Fontaine, J.-M., ‘Representations p-adiques semi-stables’, Astérisque 223 (1994), 113–184.Google Scholar

[Gee06] Gee, T., ‘A modularity lifting theorem for weight two Hilbert modular forms’, Math. Res. Lett. 13(5–6) (2006), 805–811.Google Scholar | DOI

[Gee11a] Gee, T., ‘Automorphic lifts of prescribed types’, Math. Ann. 350(1) (2011), 107–144.Google Scholar

[Gee11b] Gee, T., ‘On the weights of mod p Hilbert modular forms’, Invent. Math. 184 (2011), 1–46. doi:.Google Scholar | DOI | DOI

[GK] Gee, T. and Kisin, M., ‘The Breuil–Mézard conjecture for potentially Barsotti–Tate representations’, Forum of Mathematics, Pi 2 (2014), e1 (56 pages).Google Scholar

[GLS12] Gee, T., Liu, T. and Savitt, D., ‘Crystalline extensions and the weight part of Serre’s conjecture’, Algebra Number Theory 6(7) (2012), 1537–1559.Google Scholar | DOI

[GLS14] Gee, T., Liu, T. and Savitt, D., ‘The Buzzard–Diamond–Jarvis conjecture for unitary groups’, J. Amer. Math. Soc. 27(2) (2014), 389–435.Google Scholar | DOI

[GS11] Gee, T. and Savitt, D., ‘Serre weights for mod p Hilbert modular forms: the totally ramified case’, J. reine angew. Math. 660 (2011), 1–26.Google Scholar

[Gro90] Gross, B. H., ‘A tameness criterion for Galois representations associated to modular forms (mod p)’, Duke Math. J. 61(2) (1990), 445–517.Google Scholar

[Kis06] Kisin, M., ‘Crystalline representations and F-crystals’, inAlgebraic Geometry and Number Theory, Progress in Mathematics, 253 (Birkhäuser Boston, Boston, MA, 2006), 459–496.Google Scholar | DOI

[Kis09] Kisin, M., ‘Moduli of finite flat group schemes, and modularity’, Ann. of Math. (2) 170(3) (2009), 1085–1180.Google Scholar

[Liu08] Liu, T., ‘On lattices in semi-stable representations: a proof of a conjecture of Breuil’, Compos. Math. 144(1) (2008), 61–88.Google Scholar

[New14] Newton, J., ‘Serre weights and Shimura curves’, Proc. Lond. Math. Soc. (3) 108(6) (2014), 1471–1500.Google Scholar | DOI

[NY14] Newton, J. and Yoshida, T., ‘Shimura curves, the Drinfeld curve and Serre weights’, Preprint, 2014.Google Scholar

[Sav05] Savitt, D., ‘On a conjecture of Conrad, Diamond, and Taylor’, Duke Math. J. 128(1) (2005), 141–197.Google Scholar

[Sch08] Schein, M. M., ‘Weights in Serre’s conjecture for Hilbert modular forms: the ramified case’, Israel J. Math. 166 (2008), 369–391.Google Scholar | DOI

[Ser87] Serre, J.-P., ‘Sur les représentations modulaires de degré 2 de Gal(ℚ∕ℚ)’, Duke Math. J. 54(1) (1987), 179–230.Google Scholar | DOI

Cité par Sources :