Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2015_1,
     author = {TOBY GEE and TONG LIU and DAVID SAVITT},
     title = {THE {WEIGHT} {PART} {OF} {SERRE{\textquoteright}S} {CONJECTURE} {FOR} $\text{GL}(2)$},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fmp.2015.1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2015.1/}
}
                      
                      
                    TOBY GEE; TONG LIU; DAVID SAVITT. THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2015.1
                  
                [BDJ10] , and , ‘On Serre’s conjecture for mod l Galois representations over totally real fields’, Duke Math. J. 155(1) (2010), 105–161.Google Scholar | DOI
[BLGG13] , and , ‘Serre weights for rank two unitary groups’, Math. Ann. 356(4) (2013), 1551–1598.Google Scholar
[BLGGT14] , , and , ‘Potential automorphy and change of weight’, Ann. of Math. (2) 179(2) (2014), 501–609.Google Scholar | DOI
[Bre97] , ‘Représentations p-adiques semi-stables et transversalité de Griffiths’, Math. Ann. 307(2) (1997), 191–224.Google Scholar | DOI
[Bre14] , ‘Sur un problème de compatibilité local-global modulo p pour GL’, J. Reine Angew. Math. 92 (2014), 1–76.Google Scholar | DOI
[BM02] and , ‘Multiplicités modulaires et représentations de GL() et de Gal(ℚ∕ℚ) en l = p’, Duke Math. J. 115(2) (2002), 205–310. With an appendix by G. Henniart.Google Scholar
[BM12] and , ‘Mulitplicités modulaires raffinées’, Bull. Soc. Math. France 142 (2012), 127–175.Google Scholar
[BP12] and , ‘Towards a modulo p Langlands correspondence for GL’, Mem. Amer. Math. Soc. 216(1016) (2012), vi+114.Google Scholar
[Con11] , ‘Lifting global representations with local properties’, Preprint, 2011.Google Scholar
[CV92] and , ‘Companion forms and Kodaira–Spencer theory’, Invent. Math. 110(2) (1992), 263–281.Google Scholar
[DS] and , ‘Serre weights for locally reducible two-dimensional Galois representations’, J. Inst. Math. Jussieu, to appear.Google Scholar
[Edi92] , ‘The weight in Serre’s conjectures on modular forms’, Invent. Math. 109(3) (1992), 563–594.Google Scholar | DOI
[EGS] , and , ‘Lattices in the cohomology of Shimura curves’, Invent. Math., to appear.Google Scholar
[Fon94] , ‘Representations p-adiques semi-stables’, Astérisque 223 (1994), 113–184.Google Scholar
[Gee06] , ‘A modularity lifting theorem for weight two Hilbert modular forms’, Math. Res. Lett. 13(5–6) (2006), 805–811.Google Scholar | DOI
[Gee11a] , ‘Automorphic lifts of prescribed types’, Math. Ann. 350(1) (2011), 107–144.Google Scholar
[Gee11b] , ‘On the weights of mod p Hilbert modular forms’, Invent. Math. 184 (2011), 1–46. doi:.Google Scholar | DOI | DOI
[GK] and , ‘The Breuil–Mézard conjecture for potentially Barsotti–Tate representations’, Forum of Mathematics, Pi 2 (2014), e1 (56 pages).Google Scholar
[GLS12] , and , ‘Crystalline extensions and the weight part of Serre’s conjecture’, Algebra Number Theory 6(7) (2012), 1537–1559.Google Scholar | DOI
[GLS14] , and , ‘The Buzzard–Diamond–Jarvis conjecture for unitary groups’, J. Amer. Math. Soc. 27(2) (2014), 389–435.Google Scholar | DOI
[GS11] and , ‘Serre weights for mod p Hilbert modular forms: the totally ramified case’, J. reine angew. Math. 660 (2011), 1–26.Google Scholar
[Gro90] , ‘A tameness criterion for Galois representations associated to modular forms (mod p)’, Duke Math. J. 61(2) (1990), 445–517.Google Scholar
[Kis06] , ‘Crystalline representations and F-crystals’, inAlgebraic Geometry and Number Theory, Progress in Mathematics, 253 (Birkhäuser Boston, Boston, MA, 2006), 459–496.Google Scholar | DOI
[Kis09] , ‘Moduli of finite flat group schemes, and modularity’, Ann. of Math. (2) 170(3) (2009), 1085–1180.Google Scholar
[Liu08] , ‘On lattices in semi-stable representations: a proof of a conjecture of Breuil’, Compos. Math. 144(1) (2008), 61–88.Google Scholar
[New14] , ‘Serre weights and Shimura curves’, Proc. Lond. Math. Soc. (3) 108(6) (2014), 1471–1500.Google Scholar | DOI
[NY14] and , ‘Shimura curves, the Drinfeld curve and Serre weights’, Preprint, 2014.Google Scholar
[Sav05] , ‘On a conjecture of Conrad, Diamond, and Taylor’, Duke Math. J. 128(1) (2005), 141–197.Google Scholar
[Sch08] , ‘Weights in Serre’s conjecture for Hilbert modular forms: the ramified case’, Israel J. Math. 166 (2008), 369–391.Google Scholar | DOI
[Ser87] , ‘Sur les représentations modulaires de degré 2 de Gal(ℚ∕ℚ)’, Duke Math. J. 54(1) (1987), 179–230.Google Scholar | DOI
Cité par Sources :