$E_{6}$ AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3
Forum of Mathematics, Pi, Tome 3 (2015)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field $\mathbb{Q}$ of rational numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of type $E_{6}$. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use this to show that a positive proposition of these curves (when ordered by height) has integral points everywhere locally, but no integral points globally.
@article{10_1017_fmp_2014_2,
     author = {JACK A. THORNE},
     title = {$E_{6}$ {AND} {THE} {ARITHMETIC} {OF} {A} {FAMILY} {OF} {NON-HYPERELLIPTIC} {CURVES} {OF} {GENUS} 3},
     journal = {Forum of Mathematics, Pi},
     publisher = {mathdoc},
     volume = {3},
     year = {2015},
     doi = {10.1017/fmp.2014.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2014.2/}
}
TY  - JOUR
AU  - JACK A. THORNE
TI  - $E_{6}$ AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3
JO  - Forum of Mathematics, Pi
PY  - 2015
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fmp.2014.2/
DO  - 10.1017/fmp.2014.2
LA  - en
ID  - 10_1017_fmp_2014_2
ER  - 
%0 Journal Article
%A JACK A. THORNE
%T $E_{6}$ AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3
%J Forum of Mathematics, Pi
%D 2015
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fmp.2014.2/
%R 10.1017/fmp.2014.2
%G en
%F 10_1017_fmp_2014_2
JACK A. THORNE. $E_{6}$ AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2014.2

[BCR98] Bochnak, J., Coste, M. and Roy, M.-F., Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36 (Springer, Berlin, 1998), translated from the 1987 French original, Revised by the authors.Google Scholar

[Bha] Bhargava, M., ‘Most hyperelliptic curves over have no rational points’, Preprint.Google Scholar

[Bha10] Bhargava, M., ‘The density of discriminants of quintic rings and fields’, Ann. of Math. (2) 172(3) (2010), 1559–1591.Google Scholar

[BG] Bhargava, M. and Gross, B. H., ‘The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point’, inAutomorphic Representations and L-functions, Tata Inst. Fundam. Res. Stud. Math., 22 (Tata Inst. Fund. Res., Mumbai, 2013), 23–91.Google Scholar

[Bor66] Borel, A., ‘Density and maximality of arithmetic subgroups’, J. reine angew. Math. 224 (1966), 78–89.Google Scholar

[Bor70] Borel, A., ‘Properties and linear representations of Chevalley groups’, inSeminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, 131 (Springer, Berlin, 1970), 1–55.Google Scholar

[BHC62] Borel, A. and Harish-Chandra, ‘Arithmetic subgroups of algebraic groups’, Ann. of Math. (2) 75 (1962), 485–535.Google Scholar

[BLR90] Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21 (Springer, Berlin, 1990).Google Scholar

[Bou68] Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337 (Hermann, Paris, 1968).Google Scholar

[BS] Bhargava, M. and Shankar, A., ‘Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves’, Ann. of Math. (2) 181(1) (2015), 191–242.Google Scholar

[BS09] Bruin, N. and Stoll, M., ‘Two-cover descent on hyperelliptic curves’, Math. Comput. 78(268) (2009), 2347–2370.Google Scholar

[CX08] Clark, P. L. and Xarles, X., ‘Local bounds for torsion points on abelian varieties’, Canad. J. Math. 60(3) (2008), 532–555.Google Scholar

[Kot99] Kottwitz, R. E., ‘Transfer factors for Lie algebras’, Represent. Theory 3 (1999), 127–138. (electronic).Google Scholar

[Lan75] Lang, S., SL() (Addison-Wesley Publishing Co., Reading, MA–London–Amsterdam, 1975).Google Scholar

[Lor00] Lorenzini, D., ‘Reduction of points in the group of components of the Néron model of a Jacobian’, J. reine angew. Math. 527 (2000), 117–150.Google Scholar

[LT02] Lorenzini, D. and Tucker, T. J., ‘Thue equations and the method of Chabauty–Coleman’, Invent. Math. 148(1) (2002), 47–77.Google Scholar

[NM04] Nakano, T. and Mori, T., ‘On the moduli space of pointed algebraic curves of low genus—a computational approach’, Tokyo J. Math. 27(1) (2004), 239–253.Google Scholar

[Pan05] Panyushev, D. I., ‘On invariant theory of 𝜃-groups’, J. Algebra 283(2) (2005), 655–670.Google Scholar

[PR94] Platonov, V. and Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139 (Academic Press Inc., Boston, MA, 1994), translated from the 1991 Russian original by Rachel Rowen.Google Scholar

[PS14] Poonen, B. and Stoll, M., ‘Most odd degree hyperelliptic curves have only one rational point’, Ann. of Math. (2) 180(3) (2014), 1137–1166.Google Scholar

[Ree10] Reeder, M., ‘Torsion automorphisms of simple Lie algebras’, Enseign. Math. (2) 56(1–2) (2010), 3–47.Google Scholar

[Spr09] Springer, T. A., Linear Algebraic Groups, 2nd edn, Progress in Mathematics, 9 (Birkhäuser Boston, Inc., Boston, MA, 1998), 2009 edition (reprint).Google Scholar

[Tho] Thorne, J. A., ‘On the 2-Selmer groups of plane quartic curves with a marked rational point’, Preprint.Google Scholar

[Tho13] Thorne, J. A., ‘Vinberg’s representations and arithmetic invariant theory’, Algebra Number Theory 7(9) (2013), 2331–2368.Google Scholar

Cité par Sources :