Voir la notice de l'article provenant de la source Cambridge University Press
@article{10_1017_fmp_2014_2,
author = {JACK A. THORNE},
title = {$E_{6}$ {AND} {THE} {ARITHMETIC} {OF} {A} {FAMILY} {OF} {NON-HYPERELLIPTIC} {CURVES} {OF} {GENUS} 3},
journal = {Forum of Mathematics, Pi},
publisher = {mathdoc},
volume = {3},
year = {2015},
doi = {10.1017/fmp.2014.2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fmp.2014.2/}
}
JACK A. THORNE. $E_{6}$ AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3. Forum of Mathematics, Pi, Tome 3 (2015). doi: 10.1017/fmp.2014.2
[BCR98] , and , Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36 (Springer, Berlin, 1998), translated from the 1987 French original, Revised by the authors.Google Scholar
[Bha] , ‘Most hyperelliptic curves over have no rational points’, Preprint.Google Scholar
[Bha10] , ‘The density of discriminants of quintic rings and fields’, Ann. of Math. (2) 172(3) (2010), 1559–1591.Google Scholar
[BG] and , ‘The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point’, inAutomorphic Representations and L-functions, Tata Inst. Fundam. Res. Stud. Math., 22 (Tata Inst. Fund. Res., Mumbai, 2013), 23–91.Google Scholar
[Bor66] , ‘Density and maximality of arithmetic subgroups’, J. reine angew. Math. 224 (1966), 78–89.Google Scholar
[Bor70] , ‘Properties and linear representations of Chevalley groups’, inSeminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, 131 (Springer, Berlin, 1970), 1–55.Google Scholar
[BHC62] and , ‘Arithmetic subgroups of algebraic groups’, Ann. of Math. (2) 75 (1962), 485–535.Google Scholar
[BLR90] , and , Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 21 (Springer, Berlin, 1990).Google Scholar
[Bou68] , Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337 (Hermann, Paris, 1968).Google Scholar
[BS] and , ‘Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves’, Ann. of Math. (2) 181(1) (2015), 191–242.Google Scholar
[BS09] and , ‘Two-cover descent on hyperelliptic curves’, Math. Comput. 78(268) (2009), 2347–2370.Google Scholar
[CX08] and , ‘Local bounds for torsion points on abelian varieties’, Canad. J. Math. 60(3) (2008), 532–555.Google Scholar
[Kot99] , ‘Transfer factors for Lie algebras’, Represent. Theory 3 (1999), 127–138. (electronic).Google Scholar
[Lan75] , SL() (Addison-Wesley Publishing Co., Reading, MA–London–Amsterdam, 1975).Google Scholar
[Lor00] , ‘Reduction of points in the group of components of the Néron model of a Jacobian’, J. reine angew. Math. 527 (2000), 117–150.Google Scholar
[LT02] and , ‘Thue equations and the method of Chabauty–Coleman’, Invent. Math. 148(1) (2002), 47–77.Google Scholar
[NM04] and , ‘On the moduli space of pointed algebraic curves of low genus—a computational approach’, Tokyo J. Math. 27(1) (2004), 239–253.Google Scholar
[Pan05] , ‘On invariant theory of 𝜃-groups’, J. Algebra 283(2) (2005), 655–670.Google Scholar
[PR94] and , Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139 (Academic Press Inc., Boston, MA, 1994), translated from the 1991 Russian original by Rachel Rowen.Google Scholar
[PS14] and , ‘Most odd degree hyperelliptic curves have only one rational point’, Ann. of Math. (2) 180(3) (2014), 1137–1166.Google Scholar
[Ree10] , ‘Torsion automorphisms of simple Lie algebras’, Enseign. Math. (2) 56(1–2) (2010), 3–47.Google Scholar
[Spr09] , Linear Algebraic Groups, 2nd edn, Progress in Mathematics, 9 (Birkhäuser Boston, Inc., Boston, MA, 1998), 2009 edition (reprint).Google Scholar
[Tho] , ‘On the 2-Selmer groups of plane quartic curves with a marked rational point’, Preprint.Google Scholar
[Tho13] , ‘Vinberg’s representations and arithmetic invariant theory’, Algebra Number Theory 7(9) (2013), 2331–2368.Google Scholar
Cité par Sources :